首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cell wall of Staurastrum luetkemuelleri Donnat & Ruttner was examined with scanning electron microscope (SEM) using whole cells, in thin sections with transmission electron microscope (TEM), and in air dried whole cells and unstained thin sections with X-ray microanalysis in the scanning-transmission electron microscope (STEM). The cell wall was ornamented with spines and wartlike structures. Spines were solid structures, consisting of deposits of cell wall material between two main cell wall layers. The wart-like structures were pore organs extending through the cell wall and the mucilaginous layer outside the cell wall. The pore cylinder was surrounded by deposits of cell wall material similar to the ones in the spines. X-ray microanalysis of selected areas on whole cells from a natural population showed iron accumulation in discrete locations on the cell extensions of S. luetkemuelleri. In the unstained thin sections iron was found only in the cell wall deposits in the spines. Cells grown in laboratory cultures failed to show iron accumulation regardless of readdition of iron-EDTA (Fe-EDTA) to the culture medium.  相似文献   

2.
Summary The lobula descending neuron (LDN) of dipterous insects is a unique nerve cell (one on each side of the brain) that projects directly from the lobula complex of the optic lobes to neuropil in thoracic ganglia. In the supraoesophageal ganglia the LDN has two prominent groups of branches of which at least one is dendritic in nature. Postsynaptic branches are distributed in the lobula and some branches, the synaptic relations of which are not yet known, extend to the lobula plate. A second group of branches is found among dendrites of the descending neurons proper, in the lateral midbrain.The arborizations of LDN in the lobula (and lobula plate) map onto a retinotopic neuropil region subserving a posterior strip of the visual field of the compound eye. The arborizations in the lobula complex are extremely variable in size. The numbers of dendritic spines they possess vary greatly between left and right optic lobes of one animal, and between individual animals.  相似文献   

3.
Electron microscope observations of abdominal sympathetic ganglia of American bullfrogs, Rana catesbiana, have demonstrated the presence of specific areas of cytoplasm in the superficial zone of the perikaryon which are devoid of granulated endoplasmic reticulum. These areas are occupied almost exclusively by granules 200 to 400 A in diameter which can be stained intensely with lead hydroxide but faintly with uranyl acetate. Each granule shows subgranular internal structure after the lead staining. Granules of similar properties are found in synapses also, and may be glycogen. From the satellite cell there extends a number of leaf- or finger-like cytoplasmic projections around the root portion of the nerve process. Some of these projections directly cover the surface of the nerve process. Many others, however, are separated from the neuron by a fairly wide interspace. Multivesicular bodies of the neuron are occasionally observed in a configuration which suggests that they are being extruded from the root of the nerve process into the interspace. Filaments about 100 A in thickness are found in the satellite cell cytoplasm. They are arranged more or less parallel to each other and are especially well developed around synapses and nerve fibers.  相似文献   

4.
This paper examines the relationship between the morphological modality of 189 dendritic spines and the surrounding astroglia using full three-dimensional reconstructions of neuropil fragments. An integrative measure of three-dimensional glial coverage confirms that thin spine postsynaptic densities are more tightly surrounded by glia. This distinction suggests that diffusion-dependent synapse–glia communication near ‘learning’ synapses (associated with thin spines) could be stronger than that near ‘memory’ synapses (associated with larger spines).  相似文献   

5.
Summary Development of the axon cap neuropil of the Mauthner neuron in post-hatching larval goldfish brains was observed electron-microscopically. The axonal initial segment of newly hatched (day-4) larvae is completely covered with synaptic terminals containing clear spherical synaptic vesicles. Profiles of thin terminal axons, the spiral fibers, containing similar synaptic vesicles, rapidly increase in number around the initial segment and form glomerular neuropil similar to the central core of the adult axon cap by day 7. Three types of synapses are formed in the core neuropil. Bouton-type synapses contacting the initial segment are most abundant in day-4 to-14 larvae; they decrease thereafter and are rare on the distal half of the initial segment of day-40 larvae. Asymmetric axo-axonic synapses are commonly observed between spiral fibers in the core neuropil of day-7 to -19 larvae, but become fewer by day 40. Unique symmetrical axo-axonic synapses showing accumulation of synaptic vesicles on either side of apposed membrane thickenings first appear in day-14 core neuropil, gradually increase in number, and become the predominant type in day-40 core neuropil. Thick myelinated axons, which lose their myelin sheaths in the glial cap cell layer, start to penetrate into the axon cap on day 10. They gradually increase in number and form the peripheral part of the axon cap together with the cap dendrites, which finally grow into the axon cap from the axon hillock region of the Mauthner cell by day 40.  相似文献   

6.
The literature data and our own data on the synaptic plasticity and remodeling of synaptic organelles in the central nervous system are reviewed. Modern techniques of laser scanning confocal microscopy and serial thin sectioning for in vivo and in vitro studies of dendritic spines, including the relationship between morphological changes and the efficacy of synaptic transmission, are discussed using, in particular, a model of long-term potentiation. The organization of dendritic spines and postsynaptic densities of different categories as well as the role of filopodia in spine genesis were analyzed. It was shown that the method of serial ultrathin sections is the most effective for unbiased quantitative stereological analysis and 3D reconstructions. By using the refined method of serial ultrathin sections with subsequent three-dimensional reconstructions, the presence of giant mitochondria in hippocampal neuronal dendrites was demonstrated. It was shown that smooth endoplasmic reticulum forms a unified continuum with the outer membrane of the mitochondrial envelope within dendrites. It was suggested that this continuum provides calcium tunneling, which makes possible intracellular signal transduction during synaptic transmission. Evidence is presented indicating the presence of gap junctions ("electrical synapses") in the synapses of mammalian brain, as well as between glial processes, and between glial cells and neurons. Our data and the data of other authors show that glial cell processes form a structural and functional glial network, which modulates the functioning of the neuronal network. The connection of dendritic spines with the glial network is shown on 3D reconstructions by analyzing the neuropil volume in CA1 hippocampal area of ground squirrels in three functional states: normothermia, provoked arousal, and hibernation when brain temperature falls below 6 degrees C. The own data of the authors are discussed indicating the formation of more than five presynaptic boutons (multiple synapses) on both CA1 mushroom-like dendritic spines and CA3 thorny excrescences. On the basis of the analysis, new ideas of the organization and functioning of synapses were suggested.  相似文献   

7.
Nerve fibres in the central nervous system of the cockroach Periplaneta ameri-cana can be displayed by staining whole ganglia for 1-2 hr in a saturated solution of Procion yellow M-4R in cockroach saline diluted to maintain isotonicity. Selected fibres are stained preferentially by cutting a peripheral nerve or interganglionic connective close to the ganglion, or damaging neuron cell-bodies. The ganglion is washed in saline, fixed in alcoholic Bouin, dehydrated and embedded. Under fluorescence microscopy, sections show stained fibres brilliant yellow against a green background. The method is simpler than intracellular injection and demonstrates even the finest fibres.  相似文献   

8.
At thoracic and lumbar levels the spinal dorsal gray of young specimens of the turtle Chrysemys d'orbigny consists of a cell-free neuropil and an aggregation of perikarya termed here the lateral column of the dorsal horn (LCDH). Nerve cell clusters also occur in the dorsal commissure. The main neuropil area can be divided into a thin superficial layer containing some myelinated fibers (neuropil area Ib) and a compact core composed of unmyelinated axon terminals, dendritic branches, and thin glial processes (neuropil area II). A looser neuropil area is located at the horn base (neuropil area III). The so-called marginal zone of de Lange represents a fourth synaptic field termed here neuropil area Ia. The LCDH consists of neurons of different size and shape. Two peculiar nerve cell types have been recognized in the dorsal horn: giant and bitufted neurons. The former exhibits a large dendritic arbor, which after passing through neuropil areas II and Ib projects into neuropil area Ia and the adjacent white matter. Most frequently Golgi-stained giant neurons have perikarya and dendritic domains on the same side (ipsilateral giant neurons). There are also heterolateral giant neurons whose dendritic branches invade the opposite horn. Bitufted neurons are characterized by the presence of two main dendritic shafts connecting neuropil area II of both dorsal horns. At neuropil levels the major dendritic branches ramify profusely giving rise to short tortuous terminal processes. Perikarya of bitufted neurons occur in the dorsal commissure. The LCDH also contains many small and medium-sized neurons. These are oriented in two main directions: parallel or radial with respect to the dorsal horn surface. The population of horizontally oriented neurons comprises two subtypes termed here alpha and beta. Radially oriented neurons are pleomorphic, defying precise, unequivocal classification.  相似文献   

9.
It is generally believed that neural transmission in the central nervous systems of insects is cholinergic, on the basis of secondary evidence: the presence of cholinesterase, and sensitivity of a nonsynaptic region of the neuron, its cell body, to iontophoresed acetylcholine. In the present work a preparation has been developed which takes advantage of the availability of identified motor neurons in the locust metathoracic ganglion with known 3-dimensional geometry of dendritic fields. These neurons transmit at their peripheral neuromuscular junctions with glutamate. The fast extensor tibiae motor neuron also makes excitatory central connections onto its functional antagonists the flexor tibiae motor neurons. Unless Dale's principle is contravened, transmission at these central synapses should also be glutamatergic. This transmission onto flexor motor neurons was found to be attenuated 70% by a glutamatergic blocker. Glutamate iontophoresed into selected areas of neuropil into which the motor neurons have dendritic branches caused the neurons to be depolarized, in a dose-dependent manner. Individual motor neurons were directly excited to spike with suprathreshold iontophoretic current. With long durations of release they were desensitized, but recovered quickly with rest. The data provide evidence that central transmission onto motor neurons in the locust metathoracic ganglion is glutamatergic.  相似文献   

10.
The long term goal of this work is to understand synaptogenesis in homologous regions of the cerebral cortex, i.e. a whisker barrel. Hemispheres of aldehyde perfused mice, at various ages from P6 to P65 (DOB = P0; three each), were osmicated and sectioned at 40mm parallel to the pia. Barrels were identified, mapped and measured in sections through mid-level layer IV, and then embedded for electron microscopy. The main findings were: (1) Cell bodies and large diameter dendrites thin out in barrel hollows from P6 to P8. (2) Degeneration occurs primarily from P6 to P11, peaking on P8. (3) Single synapses from narrow, tubular axons predominate before P14; afterwards, multiple synapses from bag-like terminals increase in number. (4) The number of spines increases dramatically between P9 and P12. (5) Asymmetrical and symmetrical synapses occur at all ages studied; their junction lengths are not significantly different at any age. (6) Asymmetrical synapse density increases rapidly from P6 to P8, slowly from P9 to P 12, sharply between P13 and P14 along with patterned whisking, slowly to P20 and drops in adults. (7) Synapses onto spiny and non-spiny stellate cell bodies increase markedly from P10 to P20. (8) Changes in density of asymmetrical synapses in neuropil and of symmetrical synapses on spiny stellate cell bodies follow similar sequences but the sequence in neuropil is 72 h earlier. (9) When barrel size is taken into account, synaptogenesis is monotonic, increasing sharply in the second postnatal week followed by a slower increase into adulthood.  相似文献   

11.
The present study was designed to examine the nerve growth factor (NGF) system (ligand and receptor-expressing neurons) in the somatosensory (areas 1, 3a, and 3b) and motor (area 4) cortices of the mature macaque. Light and electron microscope immunohistochemistry was used to assess the distribution and identity of NGF-, p75-, and trk-expressing elements. In each cortical area examined, NGF-positive neuronal somata were distributed through all laminae; most immunolabeled neurons were in layers II, III, and V. Based upon light microscope criteria (e.g., the morphology of proximal dendrites), both pyramidal and stellate neurons expressed NGF. Of the identifiable NGF- immunoreactive cells, 92% were pyramidal neurons and the remainder was stellate neurons. The electron microscope study showed that most (88%) NGF-positive somata formed symmetric synapses, whereas the others formed both symmetric and asymmetric synapses. As the somata of pyramidal neurons form only symmetric synapses and those of inhibitory stellate neurons form both symmetric and asymmetric somatic synapses, the ultrastructural data support the light microscopic analyses. In contrast, neurotrophin receptors, p75 and trk, were expressed chiefly by the cell bodies of layer V pyramidal neurons and the supragranular neuropil. At the ultrastructural level, receptor-positive profiles were post-synaptic elements (e.g., dendritic shafts and spines) and the concentration of immunoreactivity was greatest in the vicinity of post-synaptic densities. Thus, NGF regulatory systems parallel excitatory and inhibitory neurotransmitter systems. Cortex contains the morphological framework by which pyramidal and/or inhibitory stellate neurons can affect the activity of post-synaptic pyramidal neurons via anterograde and autocrine/paracrine NGF systems.  相似文献   

12.
Abstract—
  • 1 The in vivo metabolism of glutamate in rat neuron cell bodies and neuropil was studied after intraventricular injection of (U-14C)glutamic acid followed by separation of the tissue into neuronal and neuropil fractions.
  • 2 The losses of amino acid and of radioactivity during the fractionation were equivalent. Recoveries were: glutamate, 32; glutamine, 15; aspartate, 25; GABA, 41; alanine, 30 per cent. In the washed cell fractions glutamine was 45 per cent and alanine 132 per cent higher in the neuronal fraction, glutamate was 62, GABA 77 and aspartate 95 per cent of neuropil levels. This contrasted with results obtained previously for in vitro incorporation. Calculation from these results indicated that 28 per cent of the original cell suspension was neuronal, 72 per cent neuropil. In the final cell preparations, 29 per cent of the neuron cell bodies and 26 per cent of the neuropil were recovered.
  • 3 Specific activity of glutamate in the neuronal fraction 15 min after injection was higher than in the original suspension, but had declined to 30 per cent of its initial value by 2 h. In the neuropil, specific activity of glutamate was below that of the cell suspension at 15 min, but at later times rose above it by up to 40 per cent.
  • 4 Radioactivity was detected in aspartate and glutamine 15 min after injection and GABA by 60 min after injection. In the original cell suspension the specific activity of glutamine was higher than that of glutamate at all times (the Waelsch effect) but aspartate and GABA were lower than glutamate.
  • 5 In the neuronal fraction the specific activity of glutamine was below that of glutamate at all times, indicating a precursor-product relationship. In the neuropil fraction, glutamine specific activity remained above glutamate for the first hour.
  • 6 These results are discussed in relation to the interpretation of the Waelsch effect in terms of metabolic compartmentation.
  相似文献   

13.
Summary Nerve cells of the human striatum were investigated with the use of a newly developed technique that reveals the pattern of pigmentation of individual nerve cells by means of transparent Golgi impregnations of their cell bodies and processes. Five types of neurons are distinguished:Type I is a medium-sized spine-laden neuron with an axon giving off a great number of collateral branches. The vast majority of the cells in the striatum belong to this type. Numerous intensely stained lipofuscin granules are contained in one pole of the cell body and may also extend into adjacent portions of a dendrite.Type II is a medium-sized to large neuron with long intertwining dendrites decorated with spines of uncommon shape. A distinguishing feature of this cell type is the presence of somal spines. This cell type is devoid of pigment or contains only a few tiny lipofuscin granules.Type III is a large multipolar neuron. The cell body generates a few rather extended dendrites that are very sparsely spined. The finely granulated pigment is evenly dispersed within a large portion of the cytoplasm.Type IV is a large aspiny neuron with rounded cell body and richly branching tortuous dendrites. The axon branches frequently in the vicinity of the parent soma. Large pigment granules are concentrated within a circumscribed part of the cell body close to the cell membrane.Type V is a small to medium-sized aspiny neuron. The dendrites break up into a swirling mass of thin branches. More than one axon may be given off from the soma. The axons branch close to the soma into terminal twigs. Cells of this type contain numerous large and well-stained lipofuscin granules.Each of the cell types has a characteristic pattern of pigmentation. The different varieties of nerve cells in the striatum can therefore be distinguished not only in Golgi impregnations but also in pigment-Nissl preparations.  相似文献   

14.
Precise patterns of motor neuron connectivity depend on the proper establishment and positioning of the dendritic arbor. However, how different motor neurons orient their dendrites to selectively establish synaptic connectivity is not well understood. The Drosophila neuromuscular system provides a simple model to investigate the underlying organizational principles by which distinct subclasses of motor neurons orient their dendrites within the central neuropil. Here we used genetic mosaic techniques to characterize the diverse dendritic morphologies of individual motor neurons from five main nerve branches (ISN, ISNb, ISNd, SNa, and SNc) in the Drosophila larva. We found that motor neurons from different nerve branches project their dendrites to largely stereotyped mediolateral domains in the dorsal region of the neuropil providing full coverage of the receptive territory. Furthermore, dendrites from different motor neurons overlap extensively, regardless of subclass, suggesting that repulsive dendrite-dendrite interactions between motor neurons do not influence the mediolateral positioning of dendritic fields. The anatomical data in this study provide important information regarding how different subclasses of motor neurons organize their dendrites and establishes a foundation for the investigation of the mechanisms that control synaptic connectivity in the Drosophila motor circuit.  相似文献   

15.
Summary Aggregates of synaptic vesicles, stained black by the zinc iodide-osmium procedure, can be visualised with the light microscope in 1 m plastic sections. This allows the main branches of a neurone to be reconstructed relatively rapidly and the associated vesicle aggregates to be plotted. By resectioning, the identity of the vesicle aggregates has been confirmed with the electron microscope. Two flight motor neurones in the mesothoracic ganglion of the locust have been examined. One is identified as a dorsal longitudinal muscle motor neurone (muscle 112) and the other is probably a subalar neurone (muscle 99). Both have a large density of vesicle aggregates on the neuropilar segment, the widest part of the main neuronal axis, but few on the neurite within 250 m of the cell body. The larger branches arising from the neuropilar segment tend to have a lower density of aggregates than fine branches, which suggests that synapses to the branches may occur mainly on the distal twigs. These results are an important preliminary step in determining the integrative functions of such neurones and have immediate implications in the interpretation of microelectrode recordings.JSA is supported by grant KU 240/3 from the Deutsche Forschungsgemeinschaft to Dr. W. Kutsch. We thank Mrs. Christine Davies for valuable assistance with the resectioning technique.  相似文献   

16.
The monosynaptic component of the neuronal circuit that mediates the withdrawal reflex of Aplysia californica can be reconstituted in dissociated cell culture. Study of these in vitro monosynaptic connections has yielded insights into the basic cellular mechanisms of synaptogenesis and long-term synaptic plasticity. One such insight has been that the development of the presynaptic sensory neurons is strongly regulated by the postsynaptic motor neuron. Sensory neurons which have been cocultured with a target motor neuron have more elaborate structures—characterized by neurites with more branches and varicosities—than do sensory neurons grown alone in culture or sensory neurons that have been cocultured with an inappropriate target cell. Another way in which the motor neuron regulates the development of sensory neurons is apparent when sensorimotor cocultures with two presynaptic cells are examined. In such cocultures the outgrowth from the different presynaptic cells is obviously segregated on the processes of the postsynaptic cell. By contrast, when two sensory neurons are placed into cell culture without a motor neuron, thier processes readily grow together. In addition to regulating the in vitro development of sensory neurons, the motor neuron also regulates learning-related changes in the structure of sensory neurons. Application of the endogenous facilitatory trasmitter serotonin (5-HT) causes long-term facilitation of in vitro sensorimotor synapses due in part to growth of new presynatpic varicosities. But 5-HT applied to sensory neurons alone in cultuer does not produce structural changes in these cells. More recently it has been found that sensorimotor synapses in cell culture can exhibit long-term potentiation (LTP). Like LTP of some hippocampal synapses, LTP of in vitro Aplysia syanpses is regulated by the voltage of the postsynaptic cell. Pairing high-frequency stimulation of sensory neurons with strong hyperpolarization of the motor neuron blocks the induction of LTP. Moreover, LTP of sensorimotor synapses can be induced in Hebbian fashion by pairing weak presynaptic stimulation with strong postsynaptic depolarization. These findings implicate a Habbian mechanism in classical conditioning in Aplysia. They also indicate that Hebbian LTP is a phylogenetically ancient form of synaptic plasticity. 1994 John Wiley & Sons, Inc.  相似文献   

17.
A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

18.
The fast extensor tibiae (FETi) motor neuron is responsible for exciting the extensor tibiae muscle to produce most of the force for jumping in acridids. Because of its relatively large size and crucial role in jumping, FETi has been studied in an ever-increasing number of orthopteran species. Here we describe the structure of the metathoracic FETi neuron in six species of acridids and in two species of gryllids. The morphology of FETi within the respective groups is essentially equivalent, but marked differences are apparent between acridid and gryllid FETis. There are similarities in the size and location of the cell body and the course of the neurite through the ganglion. Differences are found in the number of large branches, density of branching, and the volume of neuropil receiving branches. We propose that the gryllid FETi is an intermediate form between slow extensor tibiae motor neurons involved in walking and acridid fast extensor tibiae motor neurons specialized for jumping.  相似文献   

19.
Summary A large deutocerebral serotonin-immunoreactive neuron arborizes profusely in the glomeruli of the antennal lobes, and also sends neurites into the lateral lobe and the calyces of the mushroom bodies in the ipsilateral protocerebrum. Electron micrographs of the glomerular neuropil show that the main synapses of the serotonin-immunoreactive arborizations are output contacts with unidentified neuron profiles. Only a few synaptic input contacts with serotonin-labeled fibers were observed.  相似文献   

20.
The dendrites of ganglion cells in the retina have an excess number of spines and branches that are normally lost during the first postnatal month of development. We investigated whether this dendritic remodeling can be prevented when the action potential activity of ganglion cells is abolished by chronic intraocular injections of tetrodotoxin (TTX) during the first 4 or 5 postnatal weeks in the cat. Dendritic tree morphologies of alpha and beta ganglion cells from TTX-treated, non-TTX-treated (contralateral eye), and normal control retinae were compared after intracellular filling with Lucifer yellow. Qualitative observations and quantitative measurements indicate that TTX treatment does not prevent the normally occurring loss of spines and dendritic branches. Indeed, the dendritic trees of both alpha and beta cells in TTX injected eyes actually have even fewer spines and branches than normal cells at equivalent ages. However, because the total dendritic lengths of these cells are also reduced after TTX blockade, spine density is indistinguishable from untreated animals at the same age. In addition, although dendritic field areas are not altered with treatment, the complexity of the dendritic trees is reduced. These observations suggest that dendritic remodeling can occur in the absence of ganglion cell action potential activity. Thus, the factors that influence the dendritic and axonal development of retinal ganglion cells must differ, because similar TTX treatment during the period of axonal remodeling does have profound effects on the final pattern of terminal arborizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号