首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amoebae of Dictyostelium discoideum, strain HL50 were mutagenized with N-methyl-N′-nitro-N-nitrosoguanidine, cloned, allowed to form pseudoplasmodia and screened for aberrant positive and negative thermotaxis. Three types of mutants were found. Mutant HO428 exhibits only positive thermotaxis over the entire temperature range (no negative thermotaxis). HO596 and HO813 exhibit weakened positive thermotaxis and normal negative thermotaxis. The weakened positive thermotactic response results in a shift toward warmer temperatures in the transition temperature from negative to positive thermotaxis. Mutant HO209 exhibits weakened positive and negative thermotactic responses and has a transition temperature similar to the ‘wild type’ (HL50). The two types of mutants represented by HO428, HO596 and HO813 support the model that positive and negative thermotaxis have separate pathways for temperature sensing. The type of mutants which contains HO209 suggests that those two pathways converge at some point before the response.  相似文献   

2.
It has been found that Dictyostelium discoideum cells from the exponential growth phase of axenically grown cultures are cohesive, whereas those from stationary phase are not. These differences in cohesiveness are seen in phosphate buffer and in axenic medium. Stationary phase medium inhibits the aggregation of log phase cells; stationary phase cells inoculated into freshly prepared medium regain their cohesiveness. Stationary phase medium may contain an inhibitor of cell cohesion. pH differences between the two types of medium are not entirely responsible for loss of cohesiveness.  相似文献   

3.
Differentiating cells of D. discoideum in suspension bind ConA. The proportion of the bound lectin which is competitively removed by methyl-α- mannopyranoside decreases with the time of exposure. Ferritin conjugated ConA is seen to bind both to the cell surface and to be taken into the cells, the proportion of the ConA inside the cells increasing with time. The surface bound ConA is removed by washing with methyl-α- mannopyranoside while the endocytosed ConA appears unaffected. It is suggested that much of the [125I]ConA, uncompetable by methyl-α- mannopyranoside in our and other binding studies, may be this intracellular ConA.  相似文献   

4.
5.
6.
Ingrid Glomp  Benno Hess 《BBA》1986,852(2-3):315-319
Cytochrome b of the plasma membrane of Dictyostelium discoideum was investigated in purified plasma membranes and in solubilized form. The membrane-bound cytochrome b can be reduced by NADH. This reduction is inhibited by p-hydroxymercuribenzoate. The reduced cytochrome b does not react with carbon monoxide. Its apparent molecular weight lies between 13000 and 16000. Tryptic digestion yields a large, heme-containing peptide with an apparent molecular weight between 12000 and 15000. After solubilization with cholate, cytochrome b can be enriched by reversed-phase HPLC, indicating that it contains also a hydrophobic component. With these properties, cytochrome b of the D. discoideum plasma membrane resembles microsomal cytochrome b5.  相似文献   

7.
Gene regulation during dedifferentiation in Dictyostelium discoideum   总被引:2,自引:0,他引:2  
During development of Dictyostelium discoideum, cells acquire the capacity to rapidly recapitulate morphogenesis. Therefore, when cells at the loose aggregate stage are disaggregated and challenged to reaggregate, they do so in a tenth of the original time. If loose aggregate cells are disaggregated and resuspended in buffered dextrose solution (erasure medium), they retain the capacity of rapid recapitulation for 80 min, then completely lose this capacity in a single, synchronous step referred to as the "erasure event." The erasure event sets in motion a program of dedifferentiation during which cells lose developmentally acquired characteristics at different times. The erasure event is inhibited by the addition of 10(-4) M cAMP to erasure medium. The synthesis of 33 growth-associated polypeptides, the synthesis of 53 development-associated polypeptides, and the level of 2 development-associated RNAs have been monitored during the erasure program and in cultures inhibited from erasing by the addition of 10(-4) M cAMP. Growth-associated polypeptides begin to be resynthesized and development-associated polypeptides exhibit dramatic decreases in rate of synthesis at different times throughout the first 240 min in erasure medium. Inhibiting the erasure event with cAMP has no major effect in the resynthesis of the majority of growth-associated polypeptides. Only one growth-associated polypeptide, V28, is completely inhibited by cAMP, suggesting that it may play a role in the erasure process. In contrast, inhibiting the erasure event with cAMP has a marked effect on the synthesis of development-associated polypeptides, causing a dramatic reduction in the rate at which synthesis decreases for 6 polypeptides, and completely inhibits the decrease in the synthetic rate of 8 polypeptides. The two development-associated RNAs, 16G1 and 10C3, exhibit two distinctly different patterns of loss during erasure, but in both cases cAMP added at time zero of the erasure process dramatically retards or inhibits loss. In addition, when cAMP is added just prior to the erasure event, it inhibits the erasure event and stimulates a rapid increase in the level of 16G1 RNA back to the developmental level. The level of 16G1 RNA then remains at this level for at least 400 min. When cAMP is added after the erasure event, it causes a low, transient increase in the level of 16G1 RNA. These results are considered both in relation to the program of erasure, and in relation to the role of cAMP in the expression of developmental genes during the forward program of development.  相似文献   

8.
Macrocyst formation in the cellular slime moulds is a sexual process induced under dark and humid conditions. Normal development life cycle in these organisms involves proliferation by cell division and, upon starvation, formation of multicellular aggregates and fruiting bodies, consisting of spores and stalk cells. Macrocyst formation, cell division by binary fission and spore formation are thus three alternative modes of reproduction, for which it is of interest to understand how a choice is made. The genetic basis of asexual development and fruiting body formation is well known, by contrast information on the genetic control of sexual reproduction during macrocyst formation is scarce. In Dictyostelium discoideum, the most widely used species, several cell-surface proteins relevant to sexual cell fusion have been identified using cell fusion-blocking antibodies, but isolation of the relevant genes has been unsuccessful. Analysis of sexually deficient mutants, some of which are normal for asexual development, has shown that sexual reproduction is regulated by both specific genes and genes that are also involved in asexual development. Reverse genetic analysis of 24 genes highly enriched in a gamete-specific subtraction library has revealed four genes involved in the regulation of sexual cell interactions. One of them was found to be a novel regulator of the cAMP signalling pathway specific to sexual development. Studies on the molecular genetic control of the sexual cycle will be reviewed and their contribution to our understanding of the organization and function of the D. discoideum genome as a whole discussed.  相似文献   

9.
Phototaxis has been studied in a variety of organisms belonging to all three major taxonomic domains – the bacteria, the archaea and the eukarya. Dictyostelium discoideum is one of a small number of eukaryotic organisms which are amenable to studying the signalling pathways involved in phototaxis. In this study we provide evidence based on protein coimmunoprecipitation for a phototaxis signalling complex in Dictyostelium that includes the proteins RasD, filamin, ErkB, GRP125 and PKB.  相似文献   

10.
The chemotactic response of Dictyostelium discoideum cells to stationary, linear gradients of cyclic adenosine 3′,5′-monophosphate (cAMP) was studied using microfluidic devices. In shallow gradients of less than 10−3 nM/μm, the cells showed no directional response and exhibited a constant basal motility. In steeper gradients, cells moved up the gradient on average. The chemotactic speed and the motility increased with increasing steepness up to a plateau at around 10−1 nM/μm. In very steep gradients, above 10 nM/μm, the cells lost directionality and the motility returned to the sub-threshold level. In the regime of optimal response the difference in receptor occupancy at the front and back of the cell is estimated to be only about 100 molecules.  相似文献   

11.
Cells of Dictyostelium discoideum are agglutinated by by concanavalin A (Con A). Agglutination is dependent upon Con A concentration and is inhibited by preincubation with α-methyl-glucoside. Agglutination by Con A has no adverse effect on cell viability. Cells harvested from exponential growth phase are agglutinated by lower concentrations of Con A, than are cells harvested during the stationary growth phase or during differentiation. The possible significance of these findings to the process of differentiation in D. discoideum is discussed.  相似文献   

12.
In the sexual cycle of Dictyostelium discoideum, haploid cells of two opposite mating types, strains HM1 and NC4, acquire fusion-competence under certain conditions, such as suspension culture in the dark, and fuse specifically to form giant zygote cells. Each giant cell engulfs the surrounding cells, gradually increases in size, and finally develops into a macrocyst that is a sexual structure in D. discoideum. Fusion-competent HM1 cells suspended in a solution were frozen and thawed to make cell ghosts. When cell ghosts were introduced into fusion-competent and -incompetent intact NC4 cells, the cell ghosts killed them in a short time, but the fusion-competent cells were killed in preference to the fusion-incompetent cells. This killing occurred through the fusion of the cell ghosts directly to intact cell membranes. Since the fusion was specific, the fusion between ghosts and cells appears to be essentially the same as that between intact cells during the sexual cycle in molecular mechanisms.  相似文献   

13.
An analysis of metabolism by measurement of respiratory quotient values indicates that reduced substances, such as lipids and/or amino acids, are the primary respiratory substrates of dormant Dictyostelium discoideum spores. The spores appear to consume both reduced substances and carbohydrates during the swelling stage of germination. The respiration of emerged myxamoebae is again dominated by the consumption of reduced substances. The pool of trehalose remains largely intact during heat-induced activation and also during postactivation lag. The initiation of spore swelling is accompanied by a decrease in the trehalose pool; the majority of trehalose is consumed before late spore swelling. Upon placing heat-activated spores under restrictive environmental conditions, swelling and trehalose hydrolysis are both prevented. Release from these conditions results in rapid swelling and hydrolysis of trehalose. Trehalase, the enzyme responsible for trehalose breakdown, is present in dormant spores at basal levels. This preformed enzyme is responsible for the hydrolysis of trehalose even though there is a significant increase in trehalase activity with the emergence of myxamoebae. RNA and protein synthesis inhibitors do not prevent trehalose hydrolysis or spore swelling. It is concluded that oxidation of reduced substances occurs in dormant, activated, and swollen spores, as well as in emerged myxamoebae of D. discoideum. Carbohydrate utilization dominates over the oxidation of reduced substances only during the swelling stage of germination.  相似文献   

14.
A sudden increase in adenylate cyclase activity occurs during the chemotaxis and aggregation of Dictyostelium discoideum. Preincubation of extracts from the pre-aggregation stage, in which adenylate cyclase activity was low, with post-aggregation stages, in which the increase in activity occurred, resulted in the demonstration of a heat-stable inhibitor of adenylate cyclase (ACI) that was present only during the early stages of development. Cellular fractionation studies showed that ACI was present in both the 100 000 g pellet and supernatant fractions. The inhibitor was not inactivated by proteases or protease inhibitors. A heat-treated preparation of the inhibitor was dialysable. The effect of ACI was dependent upon a pre-incubation treatment, with notable inhibition occurring only after a 20 min pre-incubation period. The apparent inhibition was not artifactual, due to the degradation of the substrate, ATP, or to the loss of the reaction product, cAMP. Additionally, the inhibitor was specific for adenylate cyclase, as it had no effect on the activity of several other enzymes, including cAMP phosphodiesterase.  相似文献   

15.
A mutant of Dictyostelium discoideum, HM18, will differentiate into both stalk and spore cells when plated at high cell density (105 cells/cm2) as a monolayer on non-nutrient agar containing 5 mM cAMP [6]. At low cell density (103 cells/cm2) neither stalk nor spore cells are produced, but the addition of a cytosol fraction leads to stalk cell formation, and the addition of a membrane fraction leads to spore cell formation. The spore cell-inducing activity of the cell membranes is developmentally regulated; it is first detectable during late aggregation and increases to a maximum level in the pseudoplasmodial stage of development. The activity is sensitive to proteolysis and insensitive to periodate treatment. It is partially inactivated by incubation at 100 °C for 5 min. Variable amounts of the activity can be removed from the membrane by washing, suggesting that at least part of the activity is loosely membrane-bound. Activity is enriched in plasma membrane fractions, suggesting that the inducing factor is located at the cell surface. It is possible that the membranes are replacing a cell-cell contact requirement for spore formation.  相似文献   

16.
We have constructed a luc reporter vector for Dictyostelium discoideum using a 626-bp fragment from the nuclear-associated plasmid Ddp2. The ori from Ddp2 is localized within this fragment and was used to provide an autonomous replication sequence for the reporter vector. This reporter vector was stably retained in D. discoideum AX3K cells without alteration. The vector molecule was also found to exist in relatively low copy number compared to other Dictyostelium vectors in the transformed cells. We demonstrated the utility of this vector as a reporter vector with glycogen synthase promoter/luc fusions of varying sizes.  相似文献   

17.
Amoebae of the cellular slime mould Dictyostelium discoideum (strain Ax2) grown in axenic medium containing 86 mM glucose [G(+) cells] or no glucose [G(−) cells] were examined for the characteristics of aggregation, cAMP secretion rate, cAMP phosphodiesterase activity and cell surface cAMP-binding activity. (When G(+) and G(−) cells are mixed, G(+) cells preferentially differentiate into prespore cells and sort out to the posterior region of a slug.)Under the same conditions, G(−) cells aggregate later than G(+) cells and the formation of stable streams by G(−) cells was particularly delayed. The movements of G(−) cells during aggregation were less organized compared with the ordered behaviour of G(+) cells, yet G(−) cells seemed to be more sensitive to chemotactic signals. Furthermore, the cAMP-binding activity of G(−) cells was considerably higher than that of G(+) cells, a difference that is probably due to the difference in the number of the cAMP receptor sites. Also G(−) cells, compared to G(+) cells, secreted slightly more cAMP and showed higher activity of cell-bound phosphodiesterase activity at the aggregation stage, whereas the extracellular phosphodiesterase activity was lower, although these differences were minor.  相似文献   

18.
Using double labelling protocols we have compared the developmental metabolism of ribosomal subunits fabricated during vegetative growth of Dictyostelium discoideum with those accumulated during subsequent development. Unlike vegetative growth when ribosomal subunits are accumulated in equal amounts, early development is characterized by the accumulation of approximately twice as much large as small subunit. The unusual paucity of small subunit was not due to selective sequestration by the nucleus as previously thought nor cytoplasmic degradation. Ribosomal subunits, whether synthesized during growth or development, were degraded at equivalent rates by the developing cell indicating the lack of preferential conservation at the degradative level.  相似文献   

19.
An extrachromosomally replicating transformation vector for Dictyostelium discoideum has been constructed using sequences of the endogenous Dictyostelium plasmid Ddp2. This transformation vector pnDeI (9.6 kb) replicates as a high copy number plasmid in Dictyostelium and is located in the nucleus. It has been constructed as shuttle vector containing the Escherichia coli vector pUC19 for replication and selection in E. coli and a part of the Tn903 transposon which confers resistance to G418 for selection in Dictyostelium. In order to show that the vector can be used for cloning and stable propagation of Dictyostelium DNA, a fragment of the Dictyostelium alpha-actinin gene that was marked with a synthetic oligonucleotide was cloned into pnDeI and found to be stably maintained in the extrachromosomal vector without undergoing noticeable recombination with the endogenous gene.  相似文献   

20.
High copy number nuclear plasmids are becoming recognized as common genetic components of simple eukaryotes. Like bacterial plasmids, eukaryotic plasmids ensure their persistence in dividing cells by having a partitioning system and a regulated means of amplifying copy number to correct inherent fluctuations in partitioning. By virtue of their small size and autonomy from the chromosomes, eukaryotic plasmids are useful for studying not only features of eukaryotic replicons but many aspects of gene regulation and DNA organization in nucleated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号