首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
细胞黏附压电传感响应机制分析   总被引:2,自引:0,他引:2  
基于压电传感器的一维多层及传输线等效电路模型,利用声阻抗概念,将传感器响应与声阻抗直接联系,建立起压电传感器响应机制的声阻抗模型。由此模型对单、双层等基本负载分别导出相应的传感器响应方程。理论分析表明,声阻抗是生物传感的核心,可通过其阐明各种传感器响应机制的物理意义,特别是细胞黏附的压电传感响应机制分析。实验结果良好地验证了细胞黏附行为的压电传感响应声阻抗理论,据此建立了频率变化!f(Hz)与细胞浓度C(ml-1)之间良好的线性关系,相关系数R=0.98,其线性方程为"f=-246C-20.1(P<0.001)。研究对细胞黏附的压电传感及其应用具有指导意义。  相似文献   

2.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   

3.
A new strategy for the construction of a polyphenol oxidase carbon paste biosensor for paracetamol detection is reported. The eggplant (Solanum melongena) was processed to collect the polyphenol oxidase as an enzyme that was incorporated in the carbon paste sensor construction. The constructed sensor displayed high sensitivity and good selection for paracetamol detection and recognition. Optimized conditions included pH 6.0 (highest activity), pH 7.0 (highest stability), pulse amplitude of 50?mV, and 15% of vegetable extract per carbon paste. The sensor displayed a linear range from 20 to 200?µM, with a detection limit of 5?µM. Application of the sensor to paracetamol determination in tablet and oral solutions have shown satisfactory results. The efficiency of the method showed very good repeatability ranging between 1.26 and 1.72% relative standard deviation for interday analysis, while recoveries for paracetamol varied between 97.5 and 99.8% for the voltammetric determination. The strategy for a simple, low cost, and efficient eggplant polyphenol oxidase sensor showcased in this work provides an opportunity for the detection of other phenolic compounds in various matrices.  相似文献   

4.
A novel bionanocomposite, horse radish peroxidase- gold-nanoparticle–Calcium carbonate (HRP-AuNPs-CaCO3), hybrid material was encapsulated by silica sol on a glassy carbon electrode (GCE). The fabricated modified electrode was used as a novel voltammetric sensor for electrochemical sensing of anti-HIV replication drug i.e. deferiprone. The surface morphology of the modified electrode was characterized by scanning electron microscopy (SEM). Results obtained from the voltammetric measurements show that HRP-AuNPs-CaCO3 modified GCE offers a selective and sensitive electrochemical sensor for the determination of deferiprone. Under experimental conditions, the proposed voltammetric sensor has a linear response range from 0.01 to 10,000 μM with a detection limit of 0.01 μM. Furthermore, the fabricated sensor was successfully applied to determine deferiprone level in spiked urine and serum samples.  相似文献   

5.
For kinematic studies of the shoulder, electromagnetic sensors are commonly placed on the humerus, scapula, and trunk. The trunk sensor is used to describe humeral and scapular kinematics with respect to the trunk. There are two common trunk sensor placements, the sternum or third thoracic vertebrae (T3). It is currently unclear if placement of the trunk sensor affects kinematics, making it difficult to compare data across studies. The purpose of this study was to compare two trunk sensor placements (T3 and sternum) on trunk and scapular kinematics during arm elevation. An electromagnetic tracking system was used to collect kinematic data during five consecutive repetitions of ascending and descending arm elevation in the sagittal plane. The results indicate that trunk sensor placement had no significant effect on trunk kinematics or scapular upward/downward rotation and internal/external rotation. Scapular anterior/posterior tilt was significantly greater when the trunk sensor was on the sternum compared to the T3 vertebrae during ascending 30°–120°: mean difference = −3.51° (95%CI: −5.61, −1.40), and descending 120°–30°: mean difference = −3.27° (95%CI: −6.07, −0.48). However, the difference in anterior/posterior tilt did not exceed the error (minimal detectable change), and thus is likely not a meaningful difference. These results indicate the trunk sensors can be affixed on T3 or the sternum, depending on the needs of the study.  相似文献   

6.
结合蔗糖转化酶(INV)酶管与葡萄糖氧化酶(GOD)-葡萄糖变旋酶(MUT)双酶电极构成一种新的蔗糖传感器。该传感器可以分别用于蔗糖及葡萄糖的测定。蔗糖经酶管作用产生α-D-葡萄糖,再用COD-MUT双酶电极定糖。若是样品中蔗糖和葡萄糖共存,比较样品流经不同路径(Ws和Wg)时传感器的响应值,可以排除葡萄糖对蔗糖测定的干扰。传感器的最适pH和温度范围分别为:5.0—6.5和30—40℃。在稳态法实验中,传感器的线性范围为:2.5×10~(-4)—5×10~(-3)mol/L。传感器的重复性很好,CV<1%。该传感器在用于测定发酵培养基(含葡萄糖)的蔗糖含量,平均回收率为97.9%。传感器与糖度计法测定的相关系数为0.997。传感器至少可以稳定使用8天以上。  相似文献   

7.
A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.  相似文献   

8.
In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods.  相似文献   

9.
A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg/L (~233 ± 1 mA/m2), with a response time of <0.67 h. This sensor could, however, not measure microbial activity, as indicated by the indifferent current produced at varying active microorganisms concentration, which was expressed as microbial adenosine‐triphosphate (ATP) concentration. On the contrary, the current density (0.6 ± 0.1 to 12.4 ± 0.1 mA/m2) of the SUMFC sensor equipped with a fresh anode showed linear relationship, with active microorganism concentrations from 0 to 6.52 nmol‐ATP/L, while no correlation between the current and BOD was observed. It was found that temperature, pH, conductivity, and inorganic solid content were significantly affecting the sensitivity of the sensor. Lastly, the sensor was tested with real contaminated groundwater, where the microbial activity and BOD content could be detected in <3.1 h. The microbial activity and BOD concentration measured by SUMFC sensor fitted well with the one measured by the standard methods, with deviations ranging from 15% to 22% and 6% to 16%, respectively. The SUMFC sensor provides a new way for in situ and quantitative monitoring contaminants content and biological activity during bioremediation process in variety of anoxic aquifers. Biotechnol. Bioeng. 2011;108: 2339–2347. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Summary An experimental sensor allows continuous measurement and regulation of the water activity of a liquid medium, by measuring the relative humidity of a stream of air equilibrated with the medium. The measurements were precise (± 0.007 unities of water activity), and the small size of the sensor makes it practical for use in a standard fermentor.  相似文献   

11.
Summary A new urea sensor was developed using immobilized nitrifying bacteria isolated from activated sludges and urease. The sensor was composed of a urease-membrane, a cation exchange membrane, and an alkaline bed (pH 10), a gas permeable membrane, a microbial membrane, and an oxygen electrode.This novel combination of membranes made possible the amperometric determination of urea in an aqueous solution within 7 min in the range of 2–200 mM.The current decrease was reproducible within 5%. The selectivity of the microbial sensor for urea was satisfactory. The current output of the sensor was almost constant for more than 10 days and 150 assays.  相似文献   

12.
This study developed an adsorption-based determination system for protamine. A multi-walled carbon nanotube (MWCNT), which is a strong adsorbent, was used. The competitive adsorption process between dyes and protamine formed the basis of the sensor system. The adsorption process was followed over the dyes by UV–Vis. absorption spectroscopy. This sensor system was developed using the thermodynamic parameters. Transmission electron microscopy and Fourier-transform infrared spectroscopy techniques were used for the characterization of the sensor system. It was determined that the sensor system remained stable at physiological temperature and pH range. Limit of detection values of PyB-COO-MWCNT and PyY-COO-MWCNT systems were found to be 1.32 and 1.12 ng mL−1, respectively. The applicability of the sensor systems was demonstrated using bovine serum solutions.  相似文献   

13.
In this study, a high fluorescence sensitivity and selectivity, molecularly imprinted nanofluorescent polymer sensor (MIP@SiO2@QDs) was prepared using a reverse microemulsion method. 2,4,6‐Trichlorophenol (2,4,6‐TCP) was detected using fluorescence quenching. Tetraethyl orthosilicate (TEOS), quantum dots (QDs) and 3‐aminopropyltriethoxysilane (APTS) were used as cross‐linker, signal sources and functional monomer respectively. The sensor (MIP@SiO2@QDs) and the non‐imprinted polymer sensor (NIP@SiO2@QDs) were characterized using infra‐red (IR) analysis, X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The selectivity of MIP@SiO2@QDs was examined by comparing 2,4,6‐TCP with other similar functional substances including 2,4‐dichlorophenol (2,4‐DCP), 2,6‐dichlorophenol (2,6‐DCP) and 4‐chlorophenol (4‐CP). Results showed that MIP@SiO2@QDs had better selectivity for 2,4,6‐TCP than the other compounds. Fluorescence quenching efficiency displayed a good linear response at the 2,4,6‐TCP concentration range 5–1000 μmol/L. The limit of detection (LOD) was 0.9 μmol/L (3σ, n = 9). This method was equally applicable for testing actual samples with a recovery rate of 98.0–105.8%. The sensor had advantages of simple pretreatment, good sensitivity and selectivity, and wide linear range and could be applied for the rapid detection of 2,4,6‐TCP in actual samples.  相似文献   

14.
In a fibre-reinforced polymer (FRP) structure designed using the emerging damage tolerance and structural health monitoring philosophy, sensors and models that describe crack propagation will enable a structure to operate despite the presence of damage by fully exploiting the material’s mechanical properties. When applying this concept to different structures, sensor systems and damage types, a combination of damage mechanics, monitoring technology, and modelling is required. The primary objective of this article is to demonstrate such a combination. This article is divided in three main topics: the damage mechanism (delamination of FRP), the structural health monitoring technology (fibre Bragg gratings to detect delamination), and the finite element method model of the structure that incorporates these concepts into a final and integrated damage-monitoring concept. A novel method for assessing a crack growth/damage event in fibre-reinforced polymer or structural adhesive-bonded structures using embedded fibre Bragg grating (FBG) sensors is presented by combining conventional measured parameters, such as wavelength shift, with parameters associated with measurement errors, typically ignored by the end-user. Conjointly, a novel model for sensor output prediction (virtual sensor) was developed using this FBG sensor crack monitoring concept and implemented in a finite element method code. The monitoring method was demonstrated and validated using glass fibre double cantilever beam specimens instrumented with an array of FBG sensors embedded in the material and tested using an experimental fracture procedure. The digital image correlation technique was used to validate the model prediction by correlating the specific sensor response caused by the crack with the developed model.  相似文献   

15.
A chemiluminescence sensor has been proposed for sensitive determination of benzaldehyde, with nanosized Y2O3 as the sensing material. Under optimized conditions, the linear range of the CL intensity vs. the concentration of benzaldehyde vapour is 1.8 ng/mL–10.8 µg/mL (r2 = 0.9996), with a detection limit of 0.90 ng/mL (signal:noise ratio = 3:1). The sensor also exhibits high selectivity to benzaldehyde because no or weak CL signals have been detected when foreign substances are introduced into the sensor. In addition, the sensor also shows good stability and longer lifetime within 100 h. The results indicate that the proposed sensor, which has high sensitivity and selectivity, shows great potential for the detection of benzaldehyde. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A submersible microbial fuel cell (SBMFC) was developed as a biosensor for in situ and real time monitoring of dissolved oxygen (DO) in environmental waters. Domestic wastewater was utilized as a sole fuel for powering the sensor. The sensor performance was firstly examined with tap water at varying DO levels. With an external resistance of 1000?, the current density produced by the sensor (5.6±0.5-462.2±0.5mA/m(2)) increased linearly with DO level up to 8.8±0.3mg/L (regression coefficient, R(2)=0.9912), while the maximum response time for each measurement was less than 4min. The current density showed different response to DO levels when different external resistances were applied, but a linear relationship was always observed. Investigation of the sensor performance at different substrate concentrations indicates that the organic matter contained in the domestic wastewater was sufficient to power the sensing activities. The sensor ability was further explored under different environmental conditions (e.g. pH, temperature, conductivity, and alternative electron acceptor), and the results indicated that a calibration would be required before field application. Lastly, the sensor was tested with different environmental waters and the results showed no significant difference (p>0.05) with that measured by DO meter. The simple, compact SBMFC sensor showed promising potential for direct, inexpensive and rapid DO monitoring in various environmental waters.  相似文献   

17.
The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase.  相似文献   

18.
Whole‐cell biosensors offer potentially useful, cost‐effective systems for the in‐situ monitoring of seawater for hydrocarbons derived from accidental spills. The present work compares the performance of a biosensor system for the detection of alkanes in seawater, hosted in either Escherichia coli (commonly employed in whole‐cell biosensors but not optimized for alkane assimilation) or different marine bacteria specialized in assimilating alkanes. The sensor system was based on the Pseudomonas putida AlkS regulatory protein and the PalkB promoter fused to a gene encoding the green fluorescent protein. While the E. coli sensor provided the fastest response to pure alkanes (25‐fold induction after 2 h under the conditions used), a sensor based on Alcanivorax borkumensis was slower, requiring 3–4 h to reach similar induction values. However, the A. borkumensis sensor showed a fourfold lower detection threshold for octane (0.5 μM), and was also better at sensing the alkanes present in petrol. At petrol concentrations of 0.0125%, the A. borkumensis sensor rendered a sevenfold induction, while E. coli sensor showed no response. We discuss possible explanations to this behaviour in terms of the cellular adaptations to alkane uptake and the basal fluorescence produced by each bacterial strain, which was lowest for A. borkumensis.  相似文献   

19.
This work demonstrates improvement of a whole‐cell cadmium detection sensor through construction of a gene circuit. A cadmium (II) specific regulatory promoter, PcadR, from Psuedomonas putida 06909, is used in the assembly of a toggle circuit. The circuit contains the cadR promoter fused to lacIq and gfp, and a divergently transcribed tac promoter and cadR. The toggle sensor exhibits lower background fluorescence, and a 20‐fold lower detection limit in comparison to a nontoggle gene circuit. The detection limit of the toggle sensor is 0.01 μM (1.12 ppb) cadmium chloride, and tunable with the addition of isopropyl‐b‐D ‐thiogalactopyranoside (IPTG). The toggle sensor is highly specific to cadmium (II), and no response is elicited from zinc, lead, manganese, nickel, copper, and mercury. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Novel enantiopure pyridino‐18‐crown‐6 ether‐based sensor molecules containing an anthracene fluorophore unit were synthesized. Their enantiomeric recognition abilities toward the enantiomers of 1‐phenylethylamine hydrogen perchlorate (PhEt), 1‐(1‐naphthyl)ethylamine hydrogen perchlorate (NapEt), phenylglycine methyl ester hydrogen perchlorate (PhgOMe), and phenylalanine methyl ester hydrogen perchlorate (PheOMe) were examined in acetonitrile using fluorescence spectroscopy. The sensor molecules showed appreciable enantiomeric recognition toward the enantiomers of NapEt, PhEt, and PhgOMe. The highest enantioselectivity was found in the case of crown ether containing isobutyl groups in the macroring and the enantiomers of NapEt. Chirality 28:562–568, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号