首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the unique contributions of ecology and history to the distribution of species within communities requires an integrative approach. The Eastern Continental Divide in southwestern Virginia separates river drainages that differ in species composition: the more aquatic, predatory Desmognathus quadramaculatus is present only in the New River drainage (which drains to the Gulf of Mexico), while Desmognathus monticola is present in both the New River drainage and the James River drainage (which drains to the Atlantic Ocean). We investigated natural distributions, behavioral variation in experimental mesocosms, population genetic, and phylogenetic implications of community structure. The presence of D. quadramaculatus increased the terrestriality of D. monticola in natural and experimental situations but to different degrees in allopatric and sympatric populations. Our ecological data suggest that the degree of terrestriality in D. monticola is a result of a balance between the optimal aquatic habitat and risks of predation. Our genetic analyses suggest that D. monticola has experienced a recent range expansion and has only a recent history of association with D. quadramaculatus in Virginia. This is surprising given the strong behavioral variation that exists in populations experiencing unique community compositions over a scale of meters. This study demonstrates the need to combine both ecology and genetics toward an understanding of the factors affecting species distributions, behavioral variation between populations, and patterns of genetic variation across a landscape.  相似文献   

2.
Chronic heart failure (CHF) is associated with adaptive structural changes at the alveolocapillary barrier that may be associated with altered protein permeability. Bidirectional protein movement across the barrier was studied in anesthetized rats with infarct-induced CHF by following (125)I-labeled albumin ((125)I-albumin) flux into the alveoli and the leakage of surfactant protein (SP)-B from the alveoli into the circulation. Three groups were studied: controls [0% left ventricular (LV) infarction], moderate infarct (25-45% LV infarction), and large infarct (>46% LV infarction). Wet and dry lung weights increased in the large infarct group (both P < 0.001), consistent with increased lung water and solid lung tissue. (125)I-albumin flux increased across the endothelial (P < 0.001) and epithelial (P < 0.01) components of the alveolocapillary barrier in the large infarct group. Plasma SP-B increased 23% with moderate infarcts (P < 0.05) and 97% with large infarcts (P < 0.001), independent of alveolar levels. Lavage fluid immune cells (P < 0.01) and myeloperoxidase activity (P < 0.05) increased in the large infarct group, consistent with inflammation. Bidirectional protein movement across the alveolocapillary barrier is increased in CHF, and alveolar inflammation may contribute to this pathophysiological defect.  相似文献   

3.
The giant panda is an example of a species that has faced extensive historical habitat fragmentation, and anthropogenic disturbance and is assumed to be isolated in numerous subpopulations with limited gene flow between them. To investigate the population size, health, and connectivity of pandas in a key habitat area, we noninvasively collected a total of 539 fresh wild giant panda fecal samples for DNA extraction within Wolong Nature Reserve, Sichuan, China. Seven validated tetra‐microsatellite markers were used to analyze each sample, and a total of 142 unique genotypes were identified. Nonspatial and spatial capture–recapture models estimated the population size of the reserve at 164 and 137 individuals (95% confidence intervals 153–175 and 115–163), respectively. Relatively high levels of genetic variation and low levels of inbreeding were estimated, indicating adequate genetic diversity. Surprisingly, no significant genetic boundaries were found within the population despite the national road G350 that bisects the reserve, which is also bordered with patches of development and agricultural land. We attribute this to high rates of migration, with four giant panda road‐crossing events confirmed within a year based on repeated captures of individuals. This likely means that giant panda populations within mountain ranges are better connected than previously thought. Increased development and tourism traffic in the area and throughout the current panda distribution pose a threat of increasing population isolation, however. Maintaining and restoring adequate habitat corridors for dispersal is thus a vital step for preserving the levels of gene flow seen in our analysis and the continued conservation of the giant panda meta‐population in both Wolong and throughout their current range.  相似文献   

4.
Ecological isolation is a process whereby gene flow between selective environments is reduced due to selection against maladapted dispersers, migrant alleles, or hybrids. Although ecological isolation has been documented in several systems, gene flow can often be high among selective regimes, and more studies are thus needed to better understand the conditions under which ecological gradients or divergent selective regimes should influence population structure. We test for ecological isolation in a system in which high plasticity occurs with respect to traits that are adaptive in alternate forms under different environmental conditions. Pseudocrenilabrus multicolor victoriae is a widespread haplochromine cichlid fish in East Africa that exploits both normoxic (normal oxygen) rivers/lakes and hypoxic (low oxygen) swamps. Here, we examine population structure, using mitochondrial DNA and microsatellites, to determine if genetic divergence is significantly increased between dissolved oxygen regimes relative to within them, while controlling for geographical structure. Our results indicate that geographical separation influences population structure, while no effects of divergent selection with respect to oxygen regimes were detected. Specifically, we document (i) genetic clustering according to geographical region, but no clustering according to oxygen regime; (ii) higher genetic variation among than within regions, but no effect of oxygen regime on genetic variation; (iii) isolation by distance within one region; and (iv) decreasing genetic variability with increasing geographical distance from Lake Victoria. We speculate that plasticity may be facilitating gene flow between oxygen regimes in this system.  相似文献   

5.
6.
7.
8.
9.
Summary In published studies of the relationship between movement of nonelectrolytes across cell membranes and the lipid solubility of these test molecules, it is generally found that a number of the smaller, more water-soluble molecules deviate significantly from the general pattern relating permeability (or reflection coefficient) to lipid solubility. This is often true of the amides, for example, whose reflection coefficients are considerably lower than expected on the basis of lipid solubility. While this has been interpretep in terms of the movement of these solutes through aqueous channels in the membrane, it now appears that many of these deviant molecules may cross the membrane by means of carrier-mediated diffusion, independent of osmotic water flow. This has important implications for studies in which equivalent pore radius has been estimated from the reflection coefficients of small hydrophilic molecules, and for our present concepts of membrane structure.  相似文献   

10.
Summary The permeability coefficient for osmotically induced water flux across the sarcolemma of frog skeletal muscle fibers was determined. A new method for measuring the fiber volume change was applied, based on the fact that the resting tension of a slightly stretched muscle fiber depends on the bathing solution tonicity. Thus, after a quick change in tonicity, the volume change can be derived from the simultaneously occurring tension change. Fitting a theoretical curve to the experimentally obtained values yielded a filtration permeability coefficient for water of 0.54±0.12 cm4/osmol sec (mean ±sd, n=12). Doubling the driving force did not alter the productP Wx membrane area. TheP W value found in the present work is compared with that for muscle fibers and other cells given previously.  相似文献   

11.
Invasions of exotic species often involve a rapid evolutionary change in the introduced populations. Elodea canadensis is an invasive aquatic weed native to North America. Our aims were to reveal the evolutionary consequences of invasion to the population genetic structure of the presumably clonal E. canadensis in Finland and to test the hypothesis that the whole Finnish population originates from the first introduction of the species. We used ten polymorphic microsatellite markers to analyze the genetic characteristics of seven introduced E. canadensis populations in Finland. Despite the species' totally asexual mode of reproduction in Finland, two to five alleles per locus were detected in Finnish populations, and the expected heterozygosities varied between 0.19 and 0.37. The majority of variation was found within populations. Except for one, all pairwise values of population differentiation (F ST) were significant, indicating restricted gene flow among the Finnish populations. In addition, a Bayesian analysis of population structure revealed the presence of regional population structuring. Genetic analyses indicate that E. canadensis could have been introduced to Finland multiple times. However, the amount of genetic variation and regional clustering detected could also be explained by post-establishment evolution, and based on this study it is not possible to exclude one introduction event followed by rapid evolution. We also tested the usability of the microsatellite markers for native North American samples in order to compare the within-population genetic characteristics of introduced and native populations. However, in native populations only four microsatellite markers amplified reliably, indicating sequence variation within primer-binding regions and, thus, genetic differentiation among populations of E. canadensis.  相似文献   

12.
13.
ABSTRACT

Background: Topoclimate can influence tree establishment within treeline ecotones. Yet much less is known about how regional topography, such as the Continental Divide, Rocky Mountains, mediates the role of climate in governing treeline dynamics.

Aims: To utilise the Continental Divide to test whether contrasts in growing-season moisture regimes to the west (summer-dry) and east (summer-wet) impact the spatio-temporal patterns of tree establishment and rates of treeline advance in the Northern Rocky Mountains.

Methods: We sampled trees at sites on north- and south-facing slopes, west and east of the Continental Divide. We used dendroecological techniques to reconstruct patterns of tree establishment. Age-structure data were quantitatively compared with climate to evaluate possible mechanistic linkages.

Results: Across all sites, 96% of trees established after 1950. There was a treeline advance (range = 39–140 m) accompanied by increases in tree density. Significantly more trees established during wet springs on both sides of the Divide.

Conclusions: Overall, snow duration in spring and autumn temperatures appear to influence patterns of tree recruitment at the treeline. Continued warming will likely amplify the role of autumn climate in regulating tree establishment throughout treeline ecotones in the Northern Rocky Mountains, particularly west of the Divide where summer-dry conditions persist.  相似文献   

14.
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.Subject terms: Haplotypes, Structural variation, Conservation biology, Population dynamics, Biogeography  相似文献   

15.
Colletotrichum lupini, the causative agent of lupin anthracnose, affects lupin cultivation worldwide. Understanding its population structure and evolutionary potential is crucial to design successful disease management strategies. The objective of this study was to employ population genetics to investigate the diversity, evolutionary dynamics, and molecular basis of the interaction of this notorious lupin pathogen with its host. A collection of globally representative C. lupini isolates was genotyped through triple digest restriction site-associated DNA sequencing, resulting in a data set of unparalleled resolution. Phylogenetic and structural analysis could distinguish four independent lineages (I–IV). The strong population structure and high overall standardized index of association (d) indicates that C. lupini reproduces clonally. Different morphologies and virulence patterns on white lupin (Lupinus albus) and Andean lupin (Lupinus mutabilis) were observed between and within clonal lineages. Isolates belonging to lineage II were shown to have a minichromosome that was also partly present in lineage III and IV, but not in lineage I isolates. Variation in the presence of this minichromosome could imply a role in host–pathogen interaction. All four lineages were present in the South American Andes region, which is suggested to be the centre of origin of this species. Only members of lineage II have been found outside South America since the 1990s, indicating it as the current pandemic population. As a seedborne pathogen, C. lupini has mainly spread through infected but symptomless seeds, stressing the importance of phytosanitary measures to prevent future outbreaks of strains that are yet confined to South America.  相似文献   

16.
Glucose release from hepatocytes is important for maintenance of blood glucose levels. Glucose-6-phosphate phosphatase, catalyzing the final metabolic step of gluconeogenesis, faces the endoplasmic reticulum (ER) lumen. Thus, glucose produced in the ER has to be either exported from the ER into the cytosol before release into circulation or exported directly by a vesicular pathway. To measure ER transport of glucose, fluorescence resonance energy transfer-based nanosensors were targeted to the cytosol or the ER lumen of HepG2 cells. During perfusion with 5 mM glucose, cytosolic levels were maintained at approximately 80% of the external supply, indicating that plasma membrane transport exceeded the rate of glucose phosphorylation. Glucose levels and kinetics inside the ER were indistinguishable from cytosolic levels, suggesting rapid bidirectional glucose transport across the ER membrane. A dynamic model incorporating rapid bidirectional ER transport yields a very good fit with the observed kinetics. Plasma membrane and ER membrane glucose transport differed regarding sensitivity to cytochalasin B and showed different relative kinetics for galactose uptake and release, suggesting catalysis by distinct activities at the two membranes. The presence of a high-capacity glucose transport system on the ER membrane is consistent with the hypothesis that glucose export from hepatocytes occurs via the cytosol by a yet-to-be-identified set of proteins.  相似文献   

17.
We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation.  相似文献   

18.
Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.  相似文献   

19.
The longnose dace, Rhinichthys cataractae, is a primary freshwater fish inhabiting riffle habitats in small headwater rivers and streams across the North American continent, including drainages east and west of the Continental Divide. The mitochondrially encoded cytochrome b gene (1140 bp) and 2298–2346 bp of the nuclear‐encoded genes S7 and RAG1 were obtained from 87 individuals of R. cataractae (collected from 17 sites throughout its range) and from several close relatives. Phylogenetic analyses recovered a monophyletic R. cataractae species‐group that contained Rhinichthys evermanni, Rhinichthys sp. ‘Millicoma dace’, and a non‐exclusive R. cataractae. Within the R. cataractae species‐group, two well‐supported lineages were identified, including a western lineage (containing R. evermanni, R. sp. ‘Millicoma dace’ and individuals of R. cataractae from Pacific slope drainages) and an eastern lineage (containing individuals of R. cataractae from Arctic, Atlantic, and Gulf slope drainages). Within the eastern lineage of R. cataractae, two well‐supported groups were recovered: a south‐eastern group, containing individuals from the Atlantic slope, southern tributaries to the Mississippi River, and the Rio Grande drainage; and a north‐eastern group, containing individuals from the Arctic slope and northern tributaries to the Mississippi River. Estimates of the timing of divergence within the R. cataractae species‐group, combined with ancestral area‐reconstruction methods, indicate a separation between the eastern and western lineages during the Pliocene to early‐Pleistocene, with a direction of colonization from the west of the Continental Divide eastward. Within the southern portion of its range, R. cataractae likely entered the Rio Grande drainage during the Pleistocene via stream capture events between the Arkansas River (Mississippi River drainage) and headwaters of the Rio Grande. A close relationship between populations of R. cataractae in the Rio Grande drainage and the adjacent Canadian River (Mississippi River drainage) is consistent with hypothesized stream capture events between the Pecos (Rio Grande drainage) and Canadian rivers during the late‐Pleistocene. The population of R. cataractae in the lower Rio Grande may have become separated from other populations in the Rio Grande drainage (upper Rio Grande and Pecos River) and Canadian River during the late‐Pleistocene, well before initiation of recent and significant anthropogenic disturbance within the Rio Grande drainage. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 317–333.  相似文献   

20.

Background

Coral reefs in the Tropical Eastern Pacific (TEP) are amongst the most peripheral and geographically isolated in the world. This isolation has shaped the biology of TEP organisms and lead to the formation of numerous endemic species. For example, the coral Pocillopora damicornis is a minor reef-builder elsewhere in the Indo-West Pacific, but is the dominant reef-building coral in the TEP, where it forms large, mono-specific stands, covering many hectares of reef. Moreover, TEP P. damicornis reproduces by broadcast spawning, while it broods mostly parthenogenetic larvae throughout the rest of the Indo-West Pacific. Population genetic surveys for P. damicornis from across its Indo-Pacific range indicate that gene flow (i.e. larval dispersal) is generally limited over hundreds of kilometers or less. Little is known about the population genetic structure and the dispersal potential of P. damicornis in the TEP.

Methodology

Using multilocus microsatellite data, we analyzed the population structure of TEP P. damicornis among and within nine reefs and test for significant genetic structure across three geographically and ecologically distinct regions in Panama.

Principal Findings/Conclusions

We detected significant levels of population genetic structure (global RST = 0.162), indicating restricted gene flow (i.e. larvae dispersal), both among the three regions (RRT = 0.081) as well as within regions (RSR = 0.089). Limited gene flow across a distinct environmental cline, like the regional upwelling gradient in Panama, indicates a significant potential for differential adaptation and population differentiation. Individual reefs were characterized by unexpectedly high genet diversity (avg. 94%), relatively high inbreeding coefficients (global FIS = 0.183), and localized spatial genetic structure among individuals (i.e. unique genets) over 10 m intervals. These findings suggest that gene flow is limited in TEP P. damicornis populations, particularly among regions, but even over meter scales within populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号