首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为了探索新的花色苷资源,以黑小豆种皮为原料,对其花色苷类色素的提取工艺进行了研究。通过单因素和L_9(3~4)正交试验,考察了乙醇浓度、料液比、温度和p H对粗提液中花色苷含量的影响。结果表明,最佳提取条件为:乙醇浓度60%、料液比1∶20(g∶m L)、温度50℃、p H=2.0。此条件下,黑小豆种皮粗提液中花色苷的含量最大(5.912 mg/g);黑小豆种皮花色苷粗提物得率为19.1%,纯度为3.06%;粗提物具有一定的总抗氧化能力和清除O~(-·)_2、·OH和DPPH自由基的能力。黑小豆种皮可作为一种新型花色苷资源加以利用。  相似文献   

2.
研究紫山药色素的最佳提取工艺及其抗氧化性能。在单因素试验的基础上,采用L9(34)正交试验法,以pH示差法测定花色苷得率为考察指标,优化了溶剂提取法提取紫山药色素的工艺参数。通过DPPH体系测定该色素清除自由基能力。试验结果表明:紫山药色素属于花色苷类物质,优化的紫山药色素提取条件为:提取温度60℃,提取时间80 min,料液比1∶30,提取溶剂为0.5%盐酸乙醇溶液,提取液花色苷含量可达2.075mg/鲜紫山药g。紫山药色素提取液清除DPPH自由基的IC50为98.14μg/mL。紫山药具有开发功能性色素的潜力。  相似文献   

3.
为了优化草菇子实体多肽的提取工艺和探究其抗氧化活性,以草菇子实体为原料,采用酶解法提取草菇子实体多肽,通过单因素试验得出最佳的酶解工艺,并使用Box-Behnken设计试验组合。结果表明:草菇子实体提取多肽的最佳工艺为料液比1:52 (g/mL)、加酶量7 200 U/g、酶解温度43 ℃,此工艺条件下的多肽得率为67.76%。从1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除能力、铁离子还原能力、超氧阴离子自由基清除能力和羟自由基清除能力4个方面研究其体外抗氧化能力,结果表明,草菇子实体多肽对DPPH自由基清除率为74.11%,超氧阴离子自由基和羟自由基清除率分别在69.64%和91.83%达到稳定,草菇子实体多肽还具有一定的还原力,说明草菇子实体多肽可以作为优质抗氧化肽的良好来源。该研究为草菇多肽的高效制备和抗氧化肽等高附加值产品的研发提供理论依据。  相似文献   

4.
以3种蛋白酶对瓜尔豆种皮活性肽进行酶解分离,通过总抗氧化能力测定,筛选出木瓜蛋白酶水解提取物总抗氧化能力最强,分别为碱性蛋白酶和中性蛋白酶水解提取物的1.95倍和3.34倍。在清除超氧阴离子自由基的测定中,木瓜蛋白酶水解提取物也表现出较强的清除能力,清除率随水解溶液浓度的增加呈正量效关系,当溶液浓度为5.45mg/mL时,清除率达43.37%。通过实验证实瓜尔豆种皮酶解提取物与大豆多肽一样有较强的抗氧化能力。  相似文献   

5.
为探讨超声波辅助提取黑老虎叶总黄酮的最佳提取工艺条件及其抗氧化活性,该文以黑老虎叶为研究对象,采用超声波提取法提取黑老虎叶总黄酮,通过单因素试验研究提取时间、乙醇浓度、提取温度、料液比对黑老虎叶总黄酮提取率的影响,在单因素试验的基础上,采用正交试验优化其提取工艺条件,测试了最优条件下提取的黑老虎叶总黄酮对DPPH自由基、·OH自由基及超氧阴离子的清除能力。结果表明:黑老虎叶总黄酮超声辅助提取最佳提取条件为提取时间 35 min、乙醇浓度80%、提取温度50 ℃、料液比1:20 g·mL-1,最佳条件下提取率为4.83%。抗氧化活性测试结果显示,黑老虎叶总黄酮表现出较好的清除DPPH自由基、·OH自由基及超氧阴离子能力,其抗氧化能力为清除DPPH自由基能力>清除超氧阴离子能力>清除·OH自由基能力。在浓度为0.8 mg·mL-1时,黑老虎叶总黄酮清除DPPH自由基、·OH自由基及超氧阴离子的能力相当于同浓度下Vc的97.6%、82.1%、95.5%,黑老虎叶总黄酮是天然抗氧化剂的良好来源。上述结果为黑老虎叶活性成分的提取及开发利用提供了理论基础。  相似文献   

6.
为探讨龙脑樟去油枝叶中总多酚的酶解-超声辅助提取工艺,在单因素实验的基础上,通过Box-Behnken设计-响应面法研究纤维素酶用量(X_1)、乙醇浓度(X_2)、液料比(X_3)对龙脑樟去油枝叶中总多酚提取率的影响;同时,以清除DPPH自由基和羟基自由基的能力为评价指标,对总多酚提取物的抗氧化活性进行测定。结果表明,各因素对总多酚提取率的影响顺序为液料比(X_3)乙醇浓度(X_2)酶用量(X_1);酶解-超声辅助提取龙脑樟去油枝叶中总多酚的最优工艺条件为:酶用量1.9%,乙醇浓度54%,液料比34 m L/g,酶解温度50℃,酶解时间1.5 h,超声时间30 min,超声频率45 k Hz,超声功率360 W,超声温度70℃;在此条件下,总多酚提取率的平均值为22.08 mg/g,与预测值相近,二次回归模型预测性良好。总多酚提取物对DPPH自由基和羟基自由基的清除作用均呈现量效关系,半数抑制浓度(IC_(50))值分别为0.36和0.15 mg/m L,表明总多酚提取物具有较强的抗氧化能力。  相似文献   

7.
采用回流提取法,进行单因素试验和L9(34)正交试验,确定肾茶多酚最佳提取工艺;并通过测定1,1-二联苯基-2-苦肼自由基(DPPH·)和羟自由基(·OH)清除率评价其抗氧化活性。得到的肾茶多酚的优化提取工艺为液料比10∶1(m L/g),50%乙醇回流3次,每次提取2 h,肾茶多酚提取率为3.60%,优选的提取工艺稳定可靠,重现性好。体外抗氧化活性实验结果显示:肾茶多酚的抗氧化能力随质量浓度的增大而增强,在1~10μg/m L浓度范围内和100~1250μg/m L浓度范围内,其清除DPPH自由基和羟基自由基的能力略强于抗坏血酸,两者的对DPPH自由基半数抑制浓度分别为5.78和6.31μg/m L;对羟基自由基的半数抑制浓度为851.1和940.1μg/m L。  相似文献   

8.
本文采用纤维素酶辅助法提取透骨草中总黄酮,即先用纤维素酶酶解透骨草,再用乙醇回流法提取透骨草中的总黄酮。分别固定提取剂乙醇浓度为70%,料液比为1∶20 g/m L,初步探究了纤维素酶浓度、酶解p H、酶解温度、酶解时间四个单因素对透骨草总黄酮提取率的影响。设计正交实验确定了酶辅助法提取透骨草中总黄酮的较佳条件:纤维素酶浓度为2 U/m L、酶解p H=4.5、酶解温度为45℃、酶解时间2 h,总黄酮提取率为1.27%。本文初步探究了透骨草总黄酮提取液对羟自由基的清除活性,对照实验结果表明透骨草提取液对羟自由基清除活性要高于相同浓度的芦丁与二丁基羟基甲苯。  相似文献   

9.
黑灵芝提取物清除DPPH自由基的作用   总被引:22,自引:0,他引:22  
以黑灵芝为研究对象,采用不同方法提取黑灵芝中的有效成分,以BHT和抗坏血酸为对照品,采用DPPH.法研究各种提取物对自由基的清除作用。结果表明:微波萃取法是最适合提取黑灵芝中有效成分的现代方法,不仅产率高,而且速度快,节能;不同溶剂提取物对DPPH自由基清除率强弱依次为95%乙醇>丙酮>水>氯仿,提取物用量与清除能力成量效关系;黑灵芝的丙酮提取物浓度达到1 mg/mL时已超过10 mg/mL BHT的抗氧化效果,相当于0.5 mg/mL浓度抗坏血酸的抗氧化效果。  相似文献   

10.
青橄榄浸膏的提取及其抗氧化活性研究   总被引:1,自引:0,他引:1  
为优化青橄榄浸膏提取工艺,并探讨其抗氧化性。以茂名盛产的青橄榄为原料,采用超声波辅助乙醇提取法,以总黄酮和总多酚得率为评价指标,考察各因素对青橄榄浸膏提取效果的影响。采用邻苯三酚自氧化法、结晶紫法和DPPH清除能力评价青橄榄浸膏的抗氧化活性。结果显示,浸膏的最佳提取工艺为:乙醇体积分数70%,料液比1∶18 (g∶mL),超声提取温度50℃,时间6 min(超声提取阶段);单纯有机溶剂提取温度60℃,时间45 min(有机溶剂浸提阶段);此条件下总黄酮得率为1. 76%,总多酚得率为15. 53%。终产物浸膏在0. 3 mg/mL浓度下对超氧阴离子自由基抑制率为22. 74%,相当于同等质量浓度的抗坏血酸抑制效果的23. 47%;在0. 02 mg/mL浓度下对羟基自由基的清除率为67. 32%,相当于同等质量浓度的抗坏血酸清除效果的112. 58%;在0. 2 mmol/mL的DPPH溶液体系中,0. 15 mg/mL的浸膏对DPPH的清除率为95. 40%,相当于同等质量浓度的抗坏血酸清除效果的140. 83%;总体来讲,浸膏具有良好的抗氧化能力,虽然对超氧阴离子自由基抑制率弱于抗坏血酸,但羟基自由基的清除率及DPPH清除率均优于抗坏血酸。  相似文献   

11.
The seed coats of black soybean (Glycine max (L.) Merr.) accumulate red (cyanidin-), blue (delphinidin-), purple (petunidin-), and orange (pelargonidin-based) anthocyanins almost exclusively as 3-O-glucosides; however, the responsible enzyme has not been identified. In this study, the full-length cDNA which encodes the enzyme that catalyzes the final step in anthocyanin biosynthesis, namely UDP-glucose:flavonoid 3-O-glucosyltransferase (UGT78K1), was isolated from the seed coat tissue of black soybean using rapid amplification of cDNA ends (RACE). Of the 28 flavonoid substrates tested, the purified recombinant protein glucosylated only anthocyanidins and flavonols, and demonstrated strict 3-OH regiospecificity. Galactose could also be transferred with relatively low activity to the 3-position of cyanidin or delphinidin in vitro. These findings are consistent with previous reports of mainly 3-O-glucosylated and minor amounts of 3-O-galactosylated anthocyanins in the seed coat of black soybean. The recombinant enzyme exhibited pronounced substrate inhibition by cyanidin at 100 μM acceptor concentration. Transfer of UGT78K1 into the Arabidopsis T-DNA mutant (ugt78d2) deficient in anthocyanidin and flavonol 3-O-glucosyltransferase activity, restored the accumulation of anthocyanins and flavonols, suggesting the in vivo function of the enzyme as a flavonoid 3-O-glucosyltransferase. Genomic and phylogenetic analyses suggest the existence of three additional soybean sequences with high similarity to UGT78K1. RT-PCR confirmed the co-expression of one of these genes (Glyma08g07130) with UGT78K1 in the seed coat of black soybean, suggesting possible functional redundancies in anthocyanin biosynthesis in this tissue.  相似文献   

12.
Assay-guided fractionation of the methanol extract from black seeds of sesame (Sesamum indicum L.) led to the isolation of an active compound that had a 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. This antioxidant was confirmed to be anthrasesamone F, an anthraquinone derivative previously isolated from different black sesame seeds and biogenetically related to other anthrasesamones in sesame roots. The radical scavenging assay showed that anthrasesamone F had more potent activity than Trolox. The content of anthrasesamone F in different parts and at different developmental stages of black sesame seeds was investigated to clarify the accumulation pattern of this antioxidant in the black seeds. Anthrasesamone F was localized in the seed coat of black seeds and accumulated after the seed coat color changed to black. The content of anthrasesamone F increased gradually with seed maturation and drastically on air-drying, the final stage in sesame cultivation.  相似文献   

13.
Wang B  Li ZR  Chi CF  Zhang QH  Luo HY 《Peptides》2012,36(2):240-250
To get high yield of ethanol-soluble proteins (EP) and the antioxidant peptides from Sphyrna lewini muscle, orthogonal experiments (L(9)(3)(4)) were applied to optimize the best extraction conditions and enzyme hydrolysis conditions. The yield of EP reached 5.903±0.053% under the optimum conditions of ethanol concentration 90%, solvent to material ratio 20:1, extraction temperature of 40°C and extraction time of 80min. The antioxidant SEPH (EP hydrolysate of S. lewini muscle) was prepared by using papain under the optimum conditions of enzymolysis time 2h, total enzyme dose 1.2%, enzymolysis temperature 50°C and pH 6, and its DPPH radical scavenging activity reached 21.76±0.42% at the concentration of 10mg/ml. Two peptides (F42-3 and F42-5) were isolated from SEPH by using ultrafiltration, anion-exchange chromatography, gel filtration chromatography and RP-HPLC. The structures of F42-3 and F42-5 were identified as Trp-Asp-Arg and Pro-Tyr-Phe-Asn-Lys with molecular weights of 475.50Da and 667.77Da, respectively. F42-3 and F42-5 exhibited good scavenging activity on hydroxyl radical (EC(50) 0.15mg/ml and 0.24mg/ml), ABTS radical (EC(50) 0.34mg/ml and 0.12mg/ml), and superoxide anion radical (EC(50) 0.09mg/ml and 0.11mg/ml), but moderate DPPH radical (EC(50) 3.63mg/ml and 4.11mg/ml). F42-3 and F42-5 were also effectively against lipid peroxidation in the model system and peroxyl free radical scavenging in β-carotene linoleic acid assay. Their high activities were due to the smaller size and the presence of antioxidative amino acids within the peptide sequences.  相似文献   

14.
Kim HJ  Tsoy I  Park JM  Chung JI  Shin SC  Chang KC 《FEBS letters》2006,580(5):1391-1397
We examined the inhibition of the expression of some inflammatory genes associated with ischemia-reperfusion (I/R) injury by anthocyanins isolated from black soybean seed coat in tumor necrosis factor-alpha (TNF-alpha)-treated bovine aortic endothelial cells. In addition, its potential use on I/R-injury was investigated using rats subjected to 30-min occlusion of left descending coronary artery followed by 24-h reperfusion. Western blot analysis and luciferase activity assay showed that anthocyanins inhibited TNF-alpha-induced vascular cell adhesion molecule-1, intracellular adhesion molecule-1, and cyclooxygenase-2 levels, which is through NF-kappaB-dependent pathway. Further, anthocyanins protected myocardiac injury from I/R in rats. It is suggested that anthocyanins from black soybean seed coat can be used as a useful drug to modulate cardiovascular disorder.  相似文献   

15.
该研究以5个黑稻品种籽粒为材料,通过单因素实验探究树脂吸附法中各因素对黑米花青素纯化效果的影响,优化花青素纯化工艺,比较分析对不同黑稻品种黑米和谷壳的花青素纯化后的产量;采用1,1-二苯基-2-三硝基苯肼(DPPH)法比较其抗氧化活性,并采用PCR方法检测花青素生物合成代谢途径中关键结构基因,以明确不同黑稻品种中黑米和谷壳花青素产量及其抗氧化特性,为黑稻花青素开发利用提供技术支撑。结果表明:(1)黑稻花青素提取液的最佳纯化条件为:静态吸附平衡时间4 h,解吸时间1.5 h,吸附液pH为2.5,温度30℃,70%乙醇洗脱。(2)黑稻黑米中花青素产量最高的品种是‘辐黑香糯’(213μg/g),谷壳中花青素产量最高的品种是‘固城黑糯’(226μg/g),且‘固城黑糯’黑米和谷壳的总花青素产量最高(432μg/g)。(3)黑米花青素的DPPH清除率为65.1%,黑色谷壳花青素的DPPH清除率为73.7%,每克黑米和黑色谷壳的花青素冻干粉对DPPH自由基清除能力分别相当于3.694和4.208 mmol维生素E,谷壳花青素抗氧化能力比黑米花青素高13.9%。(4)对5个黑稻品种的花青素合成途径的5个关键基因检测发现,仅‘矮血糯’中无黄酮-3′-氢化酶基因(OsF3′H),而且其谷壳中的花青素产量(125μg/g)也显著低于其余4个品种,表明OsF3′H基因可能与黑稻谷壳的花青素含量有关。  相似文献   

16.
Total flavonoid content (TFC) and cyanidin‐3‐glucoside (Cyd‐3‐glu) of seed and seed coat extract of 16 genotypes from five species of Carthamus were studied, and their major polyphenolic compounds and antioxidant activity of the seed coat extracts were determined using HPLC analysis and DPPH assay, respectively. Additionally, fatty acids composition of the seed oil was analyzed by GC. In general, TFC and Cyd‐3‐glu content of seed coat extracts were higher than those of seed extracts. A novel breeding line with black seed coat (named A82) depicted lower TFC (3.79 mg QUE/g DW) but higher Cyd‐3‐glu (24.64 mg/g DW) compared to the white and other seed‐pigmented genotypes. DPPH radical scavenging activity showed a strong association with Cyd‐3‐glu content (r = 0.84), but no correlation with TFC (r = ?0.32). HPLC analysis of seed coat extracts revealed that four compounds were dominant constituents including rutin (7.23 – 117.95 mg/100 g DW), apigenin (4.37 – 64.88 mg/100 g DW), quercetin (3.09 – 14.10 mg/100 g DW), and ferulic acid (4.49 – 30.41 mg/100 g DW). Interestingly, the genotype A82 with an appropriate polyunsaturated/saturated fatty acids index (5.46%) and a moderate linoleic fatty acid content (64.70%) had higher nutritional and pharmaceutical value than all the other genotypes.  相似文献   

17.
J.T. Moraghan 《Plant and Soil》2004,264(1-2):287-297
The influence of times of applying FeEDDHA on seed yield and Fe accumulation by four common bean (Phaseolus vulgaris L.) and two soybean (Glycine max L.) genotypes grown on a calcareous soil was studied under greenhouse conditions. The soybean genotypes, unlike the common bean genotypes, developed Fe-deficiency chlorosis and responded to application of the chelate. A preplant application of FeEDDHA was more efficacious than a flowering application in increasing seed yield of soybean. In contrast, the flowering application was much more effective than the preplant application for increasing seed Fe concentration [Fe] of both species. Percentage of seed Fe located in the seed coat of the common bean genotypes ranged from approximately 5 to 40% and was little affected by FeEDDHA. This within-seed distribution of Fe was correlated with methanol-extractable seed-coat pigments absorbing at 500 nm, presumably anthocyanins, but not with condensed tannins (proanthocyanidins). The soybean genotypes did not accumulate anthocyanins or tannins in the seed coat. Seed of Fe-deficient soybean plants without FeEDDHA had appreciably lower [Fe] and had a lower percentage of seed Fe in the seed coat than treated plants. Within-seed distribution of Fe should be considered in plant breeding because of concerns about both human nutrition and early seedling growth. Abbreviations: DTPA – diethylenetrinitrilopentaacetic acid; EDDHA – ethylenediamine di(o-hydroxyphenylacetic acid) acid; SPAD – single photon avalanche diode  相似文献   

18.
Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号