首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homosporous pteridophytes are characterized by the production of free-living, potentially bisexual gametophytes. Because of the close proximity of archegonia and antheridia on the same thallus, it has been assumed that high rates of intragametophytic self-fertilization would predominate in natural populations of homosporous pteridophytes. Using enzyme electrophoresis we determined sporophytic genotype frequencies for natural populations of three lycopod species, Lycopodium clavatum, L. annotinum, and Huperzia miyoshiana. Based on these genotype frequencies and the estimation procedures of Holsinger (1987), the estimated rates of intragametophytic selfing in these species are extremely low. Estimated selfing rates were greater than 0.000 in only two of 13 populations of L. clavatum, one of six populations of L. annotinum, and one of four populations of H. miyoshiana. Despite the potential for intragametophytic self-fertilization, the gametophytes of these three lycopod species predominantly cross-fertilize, although the mechanism(s) promoting intergametophytic matings are unknown. These results are similar to those obtained for homosporous ferns and Equisetum arvense. It is therefore clear that most homosporous pteridophyte species investigated do not exhibit high rates of intragametophytic self-fertilization; in contrast, intergametophytic matings predominate.  相似文献   

2.
The models of Lande and Schemske predict that among species in which the selfing rate is largely under genetic control and not subject to tremendous environmental variation, the distribution of selfing rates should be bimodal. When this prediction was tested empirically using data from the literature for species of angiosperms and gymnosperms, the distribution of outcrossing rates for all species was clearly bimodal. To provide another empirical test of the prediction, we analyzed mating-system data for 20 species of Pteridophyta (ferns). Homosporous ferns and their allies are unique among vascular plants because three types of mating are possible: intragametophytic selfing (selfing of an individual gametophyte); intergametophytic selfing (analogous to selfing in seed plants); and intergametophytic crossing (analogous to outcrossing in seed plants). The distribution of intragametophytic selfing rates among species of homosporous ferns is clearly uneven. Most species of homosporous ferns would be classified as extreme outcrossers. In contrast, a few species are nearly exclusively inbreeding. In only a few populations of Dryopteris expansa and Hemionitis palmata and a single population of Blechnum spicant do we see convincing evidence of a mixed mating system. The uneven distribution of selfing rates we observed for homosporous ferns, coupled with a corresponding bimodality of the magnitude of genetic load, strongly supports the model.  相似文献   

3.
Gametophytes ofDryopteries filix-mas (L.) Schott were grown as isolates and as pairs of related and unrelated individuals. Reproductive efforts were generally highest among isolates, which reproduce by intragametophytic selfing only. Reproductive success ofD. filixmas may depend on the abundance of resources rather than the actual mating system employed. The estimates of the amount of genetic load for the two populations examined were low, 10% and 16%, respectively. The great numbers and the high viability of sporophytes produced by intragametophytic selfing indicate thatD. filix-mas does not experience serious inbreeding depression.  相似文献   

4.
Because homosporous pteridophytes (Psilotophyta, Arthrophyta, most Microphyllophyta and Pteridophyta) produce bisexual gametophytes, it was maintained that high levels of inbreeding would characterize these plants. Electrophoretic evidence was used to estimate the frequency of intragametophytic selfing in Equisetum arvense (Arthrophyta). A total of 669 samples from 17 populations was examined from western North America. Although some populations exhibited as many as seven or eight genotypes, 10 populations were each characterized by only a single genotype; eight of these populations were heterozygous for one or more loci. For most populations, estimates of intragametophytic self-fertilization are 0.000, indicating that virtually all matings involve different gametophytes. Genetic data corroborate predictions based on earlier field and laboratory investigations of Equisetum gametophytes. These detailed studies demonstrated that in many species, including E. arvense, gametophytes are initially either male or female; only later and in the absence of fertilization do some gametophytes become bisexual. Our findings join a growing electrophoretic data base which demonstrates that homosporous pteridophytes are not highly inbreeding as previously suggested.  相似文献   

5.
We investigated the evolutionary history of the spotted flycatcher Muscicapa striata, a long distance migratory passerine having a widespread range, using mitochondrial markers and nuclear introns. Our mitochondrial results reveal the existence of one insular lineage restricted to the western Mediterranean islands (Balearics, Corsica, Sardinia) and possibly to the Tyrrhenian coast of Italy that diverged from the mainland lineages around 1 Mya. Mitochondrial genetic distance between insular and mainland lineages is around 3.5%. Limited levels of shared nuclear alleles among insular and mainland populations further support the genetic distinctiveness of insular spotted flycatchers with respect to their mainland counterparts. Moreover, lack of mitochondrial haplotypes sharing between Balearic birds (M. s. balearica) and Corso‐Sardinian birds (M. s. tyrrhenica) suggest the absence of recent matrilineal gene flow between these two insular subspecies. Accordingly, we suggest that insular spotted flycatchers could be treated as one polytypic species (Muscicapa tyrrhenica) that differs from M. striata in morphology, migration, mitochondrial and nuclear DNA and comprises two subspecies (the nominate and M. t. balearica) that diverged recently phenotypically and in mitochondrial DNA and but still share the same nuclear alleles. This study provides an interesting case‐study illustrating the crucial role of western Mediterranean islands in the evolution of a passerine showing high dispersal capabilities. Our genetic results highlight the role of glacial refugia of these islands that allowed initial allopatric divergence of insular populations. We hypothesize that differences in migratory and breeding phenology may prevent any current gene flow between insular and mainland populations of the spotted flycatcher that temporarily share the same insular habitats during the spring migration.  相似文献   

6.
Abstract. Differences in genetic variability of several small, isolated populations of four fern species in a restricted area in the Swiss lowlands reflect differences in breeding system, population size, the degree of population fragmentation, and ecological requirements. The investigated populations of Asplenium septentrionale show only little genetic variability (isozyme variation) without gene flow among populations (based on the banding pattern of multi-locus phenotypes), and they persist for long periods despite the small population sizes. In Asplenium ruta-muraria, genetic variability is correlated with age. Young populations show no genetic variation, while old populations show some. All individuals of Polypodium vulgare investigated, either epiphytic or epilithic, share exactly the same enzyme phenotype. The results for these three species can be related to predominance of inbreeding, lack of inbreeding depression, polyploidy, long-distance dispersal, production of large amounts of diaspores, single-spore colonization, and perennial life cycles. Genetic variability in these three species does not seem to be absolutely necessary for the maintenance of their populations. Ecological and demographic factors are considered to be more important. An isolated, glacial relict population of diploid Asplenium viride shows high variability in two out of eight enzyme systems, which may be due to prevailing outbreeding. We discuss aspects of the importance of genetics and life history for conservation biology.  相似文献   

7.
An allozyme examination was conducted to study the mating systems and genetic differentiation of populations of Equisetum arvense and E. hyemale. The study revealed that the rate of intragametophytic selfing in these homosporous pteridophytes is very low, i.e., on average 0.020 and 0.019, respectively, despite the potential hermaproditism and selfing of the gametophytes. Most populations consisted of numerous genotypes, and the average heterozygosities of E. arvense and E. hyemale equalled 0.092 and 0.134, respectively. The commonly observed excess of the heterozygote genotypes indicates that there are interclonal differences in the frequency of vegetative reproduction. The level of genetic divergence among populations was considerable even within a limited geographic area. It is suggested that the life history of Equisetum, characterized by the inefficiency of spore germination and gametophyte reproduction in noncolonizing situations, limits the level of gene flow and leads to a great genetic divergence between populations.  相似文献   

8.
Abstract Intragametophytic selfing in the homosporous ferns has been viewed as an advantageous mechanism permitting colonization of distant, open habitats. However, there is little evidence for the generality of colonization through intragametophytic selfing. In this study, the genetic structure of Pteris multifida was determined using Wright's F-statistics in order to detect the occurrence of this type of colonization. A high level of genetic divergence among populations (FST= 0.543) was found in P. multifida. This genetic divergence seems to be caused by frequent occurrences of colonization through intragametophytic selfing.  相似文献   

9.
Using RAPD markers and one morphological marker, we studied the among- and within-population structure in a selfing annual plant species, Medicago truncatula GAERTN. About 200 individuals, sampled from four populations subdivided into three subpopulations each, were scored for 22 markers. It was found that the within-population variance component accounted for 55% of the total variance, while the among-population variance component accounted for 45%. Eighteen percent of the total variance was due to within-population structure (i.e., among subpopulations). Thus, 37% of the total variance was within subpopulations. Using a multilocus approach, it was found that no multilocus genotype was common to two populations. Two of the four studied populations were composed of few (≤6) multilocus genotypes, whereas the other two had many (≥15) multilocus genotypes. In the most polymorphic population (37 genotypes), only one genotype was found to be common to two subpopulations. Resampling experiments show that, depending on the population, three to 16 polymorphic loci were necessary and sufficient to score all multilocus genotypes in the population. When these data are compared to published results, it appears that on some occasions, the number of genotypes per population of selfing species might be larger than would be expected from the sole consideration of effective population size. The large within-subpopulation genetic variance observed in some populations could be explained by either small neighborhood sizes within subpopulations, or by outcrossing following migration through seed and/or pollen.  相似文献   

10.
We studied genetic effects of the colonisation process during primary succession by analysing allozyme variation at a PGI locus in differently aged populations of Moehringia trinervia , which is a selfing annual with low dispersal ability. The populations studied come from islands and shores created in the 1880s by a drop in the water table of a Swedish lake and from old parts of a large island and of the mainland. The population age is known from five vegetation analyses over a century. We have also analysed the genetic composition of M. trinervia derived from seeds in the soil. Mainland populations had a higher genetic diversity than island populations that were little differentiated and differed genetically from the mainland populations. There was no temporal trend in the distribution of genetic variation on the new islands. The presence of alleles in the extant populations was associated with the proportion of that allele in the seed bank, indicating a main recruitment from the seed bank and not by repeated immigrations. We suggest that some of the new islands were colonised by a few early founders from the mainland. Later colonisation has occurred between adjacent islands, which preserves the founder effect and could explain the uniform, low genetic variation in the island populations.  相似文献   

11.
Graptolites from the Jaeger collection at the Museum für Naturkunde (Berlin, Germany) provide important information on structural details of Silurian (Wenlock–Ludlow) retiolitids as well as for the biostratigraphic and biogeographic distribution of these magnificent graptolites. Species of the genera Cometograptus, Spinograptus and Plectograptus are described from isolated glacial boulder material, collected in northern Germany and from shale specimens found in the Lower Graptolite Shale of Thuringia. The biostratigraphic placement of material derived from glacial erratic boulders, however, is far from being precise. The fauna associated with the neotype of Plectograptus macilentus in the ‘Unterer Graptolithenschiefer’ of Thuringia is discussed and illustrated. Cometograptus alfeisenacki from the Cyrtograptus lundgreni Biozone is recognized as a new species. The genus is discovered for the first time in North German glacial erratic boulders.  相似文献   

12.
Intragametophytic selfing is a mode of reproduction occurring in homosporous ferns where two gametes from the same haploid gametophyte form a completely homozygous sporophyte. The inbreeding equilibrium is derived for a population with partial intragametophytic selfing, selfing, and outcrossing. Procedures for directly estimating the extent of intragametophytic selfing and selfing using parent-offspring data are given. The conditions for a stable polymorphism from a heterozygous-advantage fitness model are more restrictive for partial intragametophytic selfing than for selfing. The rate of decay of gametic disequilibrium is slower for partial intragametophytic selfing than for selfing. Based on these findings, one would predict that plants with intragametophytic selfing would have less polymorphism for loci with a heterozygous advantage and more gametic disequilibrium between neutral loci than is expected for populations with an equivalent amount of selfing. Data from several studies are consistent with these predictions.  相似文献   

13.
Ayu, Plecoglossus altivelis, is an amphidromous fish which isdistributed over the Japanese Archipelago including peripheralislands, some of which harbor endangered populations. Weanalyzed nucleotide sequences of the mitochondrial DNA controlregion to clarify the factors affecting the genetic variabilityof mainland and insular populations. As inferred from nucleotidediversity , the overall low genetic variability in insularpopulations suggests their vulnerability to extinction, althoughthere were still significant genetic differences betweenpopulations. Patterns of genetic variability were explained bygene flow with the mainland population as inferred from pairwisefixation index F ST and the rate of loss of haplotypes assessedfrom haplotype diversity h, in turn, these two factors arefunctions of the geographical distance from the mainland andpopulation size, respectively. We conclude that the geneticvariability observed on each island is brought about by its owndynamic equilibrium maintained by continuous immigration andlocal extinction, depending on the geographical location of theisland relative to the mainland together with the size of theisland. Conservation measures for insular populations arerecommended to take this uniqueness into account.  相似文献   

14.
The higher vulnerability of islands to invasions compared to mainland areas has been partially attributed to a simplification of island communities, with lower levels of natural enemies and competitors on islands conferring vacant niches for invaders to establish and proliferate. However, differences in invader life-history traits between populations have received less attention. We conducted a broad geographical analysis (i.e. 1050 km wide transect) of plant traits comparing insular and mainland populations to test the hypothesis that alien plants from insular populations have the potential for higher invasiveness than their alien mainland counterparts. For this purpose plants of the annual geophyte Oxalis pes-caprae were grown from bulbs collected in the Balearic islands and the Spanish mainland under common greenhouse conditions. There were no significant differences in bulb emergence and plant survival between descendants from insular and mainland populations. However, Oxalis descendants from insular populations produced 20% more bulbs without reducing allocation to bulb size, above-ground biomass or flowering than descendants from mainland populations. Based on the lack of sexual reproduction in Oxalis and the dependence of invasion on bulb production, our study suggests that the higher occurrence of Oxalis in the Balearic islands than in the Spanish mainland can partially be explained by genetically based higher propagation potential of insular populations compared to mainland populations.  相似文献   

15.
Four diploid plants and four tetraploid plants ofPhegopteris decursive-pinnata were investigated for determination of the reproductive characteristics of their gametophytes and two major features were recognized. First, gametophytes of the diploids showed an ontogenetic sequence of gametangium formation which is unfavorable for intragametophytic selfing, whereas those of the tetraploids showed that favorable for intragametophytic selfing. Second, 41 to 72% of the isolated gametophytes of the diploids produced sporophytes in the intragmetophytic selfing tests, whereas all of the isolated gametrophytes of the tetraploids produced sporophytes in the tests. Based on these developmental and genetic features of gametophytes, the dissimilar mating systems of the diploids and the tetraploids of this species are discussed.  相似文献   

16.
Aim Genetically differentiated insular populations are candidates for independent units for conservation. However, occasional immigration to reduced island populations may occur and potentially have important consequences in their future viability and evolutionary potential. In this study, we investigate the conservation implications of population structure and connectivity of insular and continental populations of a migratory raptor as determined using genetic tools and satellite tracking. Location Western European populations in the Iberian Peninsula and two insular populations in the Mediterranean Sea (Balearic Islands) and Atlantic Ocean (Canary Islands). Methods We genotyped 22 microsatellite loci in 96 Egyptian vultures (Neophron percnopterus) from the Iberian Peninsula, 36 from Menorca (Balearic archipelago) and 242 (85% of the current population) from Fuerteventura (Canary Islands). We analysed genetic variation to estimate structure, gene flow, genetic diversity, effective size and recent demographic history of the populations. Additionally, 19 vultures were marked with satellite transmitters to track their migration routes. Results Insular populations were genetically differentiated from those of the mainland. We detected immigration in the insular populations and within the continental counterpart. We found similar levels of genetic variability between the continent and the islands, and a bottleneck analysis indicated recent sharp population declines in both archipelagos but not on the continent. Main conclusions Our study provides evidence that, in spite of significant differentiation, insular populations of highly mobile species may remain connected with the mainland. Conservation programmes should take into account population connectivity and integrate differentiated units of management within complex units of conservation that can best maintain processes and potential for evolutionary change.  相似文献   

17.
Aim To provide insights into genetic differentiation between insular endemic Weigela coraeensis var. fragrans and its progenitor variety W. coraeensis var. coraeensis, the population genetic structure of both varieties was examined, and factors promoting genetic differentiation between the two taxa were explored. Location The natural range of W. coraeensis (sensu lato) throughout mainland Japan (Honshu) and the Izu Islands. Methods The analysis included 349 and 504 individuals across the mainland (Honshu) and the Izu Islands, respectively, using 10 allozyme and 10 microsatellite loci. The population genetic structure of W. coraeensis was assessed by analysing genetic diversity indices for each population, genetic differentiation among populations, model‐based Bayesian clustering or distance‐based clustering, and bottleneck tests. Results The level of genetic diversity in each of the populations on the Izu Islands was negatively correlated with geographical distance between each island and the mainland. The populations on the mainland and on the Izu Islands were genetically differentiated to a certain extent; however, the microsatellite analyses suggested that gene flow also occurred between the mainland and the islands, and among individual islands. These microsatellite analyses also suggested recent bottlenecks in several populations in both areas. Main conclusions The decrease in genetic diversity throughout the Izu Islands, which correlated with distance to the mainland, Honshu, may be the result of a repeated founder effect occurring at a series of inter‐island colonizations from north to south. The stepping stone‐like configuration of the islands may have played a role in the dispersal of the species. Geographical isolation by sea would effectively result in genetic differentiation of W. coraeensis between mainland Honshu and the Izu Islands, although some gene flow may still occur between Honshu and the northern Izu Islands. The differentiation process of the endemic plants on the Izu Islands is anagenetic but not completed, and the study of these plants will provide insightful knowledge concerning the evolution of insular endemics.  相似文献   

18.
Population genetic structure was examined in five populations of the xerically adapted homosporous fern Cheilanthes gracillima. F statistics using allozymic data indicated substantial genetic structure in all populations. To determine the factors responsible for genetic structure, we calculated levels of intragametophytic selfing and the fixation index for each subpopulation of each population and estimated levels of intrapopulational gene flow in each population. These analyses indicated that each subpopulation was a panmictic unit; thus, population genetic structure is not due to family structure, arising via matings between relatives. Intrapopulational gene flow was surprisingly low, given the typically high dispersibility of fern spores. However, it seems unlikely that spore dispersal in C. gracillima is significantly reduced relative to other homosporous ferns. Instead, we propose that the low rates of intrapopulational gene flow reflect limited availability of safesites for spore germination and gametophyte establishment. This ecological factor may play a primary role in generating and/or maintaining population genetic structure in C. gracillima.  相似文献   

19.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

20.
Epiphytes are ecologically important components of tropical forests worldwide and yet they have been underrepresented in studies of reproductive biology. Given the presumed ephemeral nature of their substrates, and the importance of dispersal and colonization, epiphytes might be expected to undergo substantial inbreeding to ensure reproductive success, as in weedy terrestrial plants. While there is some evidence for inbreeding in epiphytic angiosperms, the only previous studies of fern epiphytes indicate that they are predominantly outcrossing. The present study reports on the genetic diversity and breeding system of six members of the Neotropical epiphytic fern genus Pleopeltis (Polypodiaceae). A survey of isozyme variability using starch gel electrophoresis revealed high population levels of polymorphism (P = 0.62), allelic diversity (A = 2.3), and individual heterozygosity (Ho = 0.181), but little differentiation among conspecific populations (I 3 0.98; Gst = 0.048), and high interpopulational gene flow rates (Nm > 1). In addition, there was no indication of homozygote excess within populations that might indicate a history of selfing in these ferns: populations generally conformed to Hardy-Weinberg expected genotype frequencies, and both Wright's inbreeding coefficient (Fis) and Holsinger's intragametophytic selfing rates approached zero. Possible mechanisms limiting inbreeding in these ferns include antheridiogen activity and high levels of genetic load that would lead to inbreeding depression upon selfing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号