首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
以栀子黄色素为原料,对其水解反应制备藏红花酸及其纯化条件进行了研究,结果表明,栀子黄色素经碱水解法制备藏红花酸的最佳条件为:KOH溶液10%、温度为60℃、反应时间120 min,水解所得藏红花酸通过甲醇除杂,重结晶后,所得结晶其mp.、uv与文献报道一致,其质谱的诱导碰撞解离技术获得碎片裂解信息均表明所得到的结晶为藏红花酸,经HPLC检测纯度达到98.43%,得率为8.42%。  相似文献   

2.
以栀子提取物为原料,利用正交实验设计方法优化其碱水解制取京尼平苷酸的工艺。以京尼平苷酸产率为评价指标,考察了水解温度、NaOH加入量、料液比和水解时间4个单因素,采用四因素三水平正交实验设计优选得出最佳水解工艺:水解温度为70℃、NaOH加入量为14.0 m L、料液比1∶30 g/m L、水解时间为10 min,京尼平苷酸产率为11.53%。水解后溶液经过一次活性炭静态吸附和解吸,京尼平苷酸的含量可达45.33%。  相似文献   

3.
藏红花酸及藏红花酸二甲酯的制备与抗氧化性能研究   总被引:5,自引:0,他引:5  
本文首先从栀子果中提取分离出栀子黄色素,栀子黄色素分别经过水解、酯交换反应得到藏红花酸和藏红花酸二甲酯。将产物分别经过重结晶处理,得到纯度为98.2%的藏红花酸和98.8%的藏红花酸二甲酯,其IR、UV、1HNMR均与文献报道一致。采用羟基自由基体系和超氧阴离子自由基体系对藏红花酸及藏红花酸二甲酯的体外抗氧化活性进行研究,并与BHT进行比较。结果表明,在试验质量浓度范围内,藏红花酸以及藏红花酸二甲酯的清除羟基自由基与超氧自由基的能力都明显强于BHT,为优秀的天然抗氧化剂。  相似文献   

4.
本文优选了碱水解丹参中的丹酚酸B生产丹参素的工艺。分别以水解前后丹参素和丹酚酸B的增长率和水解率综合评分为评定指标,以影响水解效率的碱(Na OH)浓度、水解时间、料液比和温度为考察因素,每个因素设置3个水平,采用正交试验法L9(34),确定出最优水解工艺为:采用浓度为0.6%的Na OH溶液,以1∶20(g/m L)的料液比,在100℃下水解1.0 h。结果显示,水解前后丹参素的平均增长率为1145.66%,丹酚酸B的水解率为98.94%,丹参素的含量由0.27%增加至3.36%。  相似文献   

5.
栀子黄色素的醇提制备及其稳定性研究   总被引:1,自引:0,他引:1  
通过单因素实验,考察栀子黄色素乙醇提取工艺。乙醇提取最优工艺条件为:乙醇浓度30%、液固比8:1、提取温度60℃、提取次数2次、每次1h。在此条件下,栀子黄色素、栀子苷和总三萜酸的提取率分别为1.32、110.76和94.91mg/g。  相似文献   

6.
沙棘是一种含有丰富营养物质和生物活性成分的植物。为了进一步提高新疆阿合奇县沙棘中三萜酸物质的得率,利用单因素实验与正交试验优化沙棘中三萜酸物质的提取工艺,并分析比较沙棘不同部位的三萜酸物质含量差异。通过单因素实验确定了影响萜类物质得率的重要因素为乙醇浓度、料液比。以总三萜酸的得率为综合考察指标,采用正交试验确定了沙棘三萜酸的最适提取工艺条件:按照料液比1∶15(g/mL)加入体积分数80%的乙醇,先超声1 h,再将料液进行60℃水浴回流1.5 h。在此条件下,沙棘叶中三萜酸的得率达到2.332 mg/g,其中科罗索酸为0.332 mg/g、齐墩果酸为0.875 mg/g,熊果酸为1.125 mg/g。沙棘不同部位的三萜酸总含量(从大到小)顺序为沙棘叶、沙棘籽、沙棘果。  相似文献   

7.
《蛇志》2018,(4)
目的用正交试验法对薄荷中迷迭香酸的含量进行检验,优化薄荷的提取工艺。方法以浸膏得率及薄荷中迷迭香酸含量为考察指标,考察料液比(A)、提取时间(B)、提取次数(D)3个影响因素,采用L9(34)正交试验筛选最佳水提工艺,考察浸膏得率,并运用高效液相色谱法(HPLC)测定迷迭香酸含量并定性定量分析。结果最佳提取工艺为料液比1∶18,浸提3次,每次1h。结论优选的提取工艺方法简单、稳定可行。  相似文献   

8.
以杜仲叶提取物为原料,采用酸水解的方法制备杜仲叶黄酮苷元,通过单因素及正交试验优化杜仲叶黄酮苷元的水解条件;并研究了聚酰胺两步法富集黄酮苷元的工艺条件。结果表明:当料液比为2∶1(mg/m L)时,杜仲叶黄酮苷元水解的最佳工艺参数为:水解温度80℃,水解时间3 h,盐酸浓度6 mol/L,黄酮苷元的含量可达到2.512%。水解样品经过一次聚酰胺静态吸附,黄酮苷元的纯度可达12.87%,再经聚酰胺二次富集,杜仲黄酮苷元纯度可达63.19%。  相似文献   

9.
目的:探究以枸杞子和菊花为主药,玫瑰花、麦芽、陈皮为辅药组建的复方明目口服液的最佳制备工艺。方法:以复合多糖提取率和浸膏得率为评价指标,采用单因素试验和正交试验对复方明目口服液的制备工艺进行探究。结果:单因素实验结果可得,复方明目口服液的最佳提取条件为料液比1∶14、提取温度80℃、提取时间2.5 h。正交实验方差分析表明液料比在提取工艺中为显著性因素,其次为提取温度,而提取时间对提取结果影响最小。结论:复方明目口服液的最佳制备工艺为料液比1∶14、提取温度100℃、提取时间2 h,且多糖提取率和浸膏得率分别高达15.28%±0.012%、33.89%±0.024%。  相似文献   

10.
采用3,5-二硝基水杨酸法(DNS法)测定了宁波四明山区野生黄精的多糖含量,并对水煎煮法提取黄精多糖的工艺进行优化。通过单因素实验获得了提取温度、提取时间、液料比对黄精多糖得率的影响;在单因素实验的基础上采用L_9(3~4)正交试验优化黄精多糖提取工艺。研究结果表明,宁波野生黄精多糖的含量为25.09%;各因素对黄精多糖得率的影响不同,液料比对黄精多糖得率的影响最大,其次是提取温度和提取时间。黄精多糖最佳提取工艺为:提取温度为80℃,提取时间为2 h,液料比为20∶1,在该条件下,黄精多糖得率为27.43%。为黄精多糖的开发利用奠定了理论基础。  相似文献   

11.
为了对岩藻黄素的提取、纯化进行系统研究,进而为高纯度岩藻黄素的工业化生产提供研究基础,筛选了适用于提取铜藻(Sargassum horneri)鲜藻中岩藻黄素的有机溶剂,并通过单因素实验和正交实验确定了最佳的提取溶剂浓度、提取温度、提取时间、料液比等工艺参数。随后采用硅胶柱层析法进行纯化,并通过单因素实验确定了最佳的硅胶柱床高度、上样量和洗脱流速。最后采用制备液相法对经层析纯化的岩藻黄素进一步纯化。结果表明,有机溶剂萃取的最佳工艺条件为:甲醇浓度90%,提取温度50 ℃,提取时间1 h,料液比1∶10,此条件下岩藻黄素提取率达到(0.258 9±0.003 6) mg·g-1鲜重(FW)[(1.078 8±0.015 0) mg·g-1干重(DW)]。硅胶柱层析的最佳工艺条件为:硅胶柱床高度10 cm,上样量6 g,洗脱流速10 mL·min-1,此条件下岩藻黄素得率为0.176 5 mg·g-1FW(0.735 3 mg·g-1 DW),纯度为87.01%±0.88%。经制备液相进一步纯化后,岩藻黄素得率为0.127 1 mg·g-1 FW(0.529 4 mg·g-1 DW),纯度为99.27%±0.22%。研究所用工艺简单,岩藻黄素得率高,为高纯度岩藻黄素的制备提供了实验基础。  相似文献   

12.
光合菌群发酵玉米秸秆水解液产氢   总被引:1,自引:0,他引:1  
以玉米秸秆水解液作为产氢底物,研究光合菌群产氢性能。考察了硫酸浓度、固液比、水解时间、水解温度等秸秆水解条件对产氢的影响,确定了最佳水解条件,并对不同脱毒方法进行了对比研究。结果表明,最佳的水解条件为硫酸浓度1%,固液比1:12,水解时间0.5 h,水解温度为110°C。采用Ca(OH)2脱毒方法的产氢效果要优于其他2种脱毒方法;NH4+在一定浓度范围内对该光合菌群产氢有促进作用。  相似文献   

13.
超临界下有机酸对稻秆水解糖化的影响   总被引:2,自引:0,他引:2  
采用间歇式反应器在超临界条件下,以有机酸(甲酸、乙酸和丙酸)为催化剂对稻秆进行水解糖化研究,重点考察反应温度、反应时间、固液比对还原糖产率的影响。实验表明:有机酸的加入有利于稻秆的水解糖化,稻秆水解速率和还原糖产量都有所提高,这种趋势在加入甲酸时最为明显;随着反应时间的延长,还原糖产量会逐渐减少;适当提高固液比有助于增加还原糖产量。稻秆超临界水解糖化的最佳条件:甲酸体积分数3%、固液比4:60(g/mL)、反应温度410℃、反应时间5min,在此条件下,还原糖产量最高,达6.65g/L。  相似文献   

14.
The effects of pretreatment process variables [straw concentration between 20 and 90 kg volatile solids (VS)/m(3), temperature between 30 and 85 degrees C, and alkaline dosage between 0 and 80 g NaOH/kg VS] on acidogenesis and methanogenesis were investigated. Rates of acidogenesis and methanogenesis were determined using firstorder kinetics, and ultimate acid and methane yields were measured. The acid yield was not affected by pretreatment concentration or temperature, but increased as alkaline dosage increased. The acidogenesis rate was not affected by pretreatment temperature or alkaline dosage, but decreased as the substrate concentration increased. This decrease in the acidogenesis rate was attributed to a decrease in the inoculum: substrate ratio as the substrate concentration increased. The methane yield and methanogenesis rate were not affected by pretreatment substrate concentration or temperature, and both increased with alkaline dosage up to about 40 g NaOH/kg VS, then remained relatively constant above 40 g NaOH/kg VS.  相似文献   

15.
采用正交法优化山里红叶中牡荆素的超声辅助提取工艺。通过盐酸浓度、提取时间、固液比、超声功率、超声温度、乙醇浓度6种影响因素的单因素实验,研究它们与牡荆素提取得率之间的规律趋势;应用正交设计优化试验,研究盐酸浓度、提取时间、固液比和超声功率对山里红叶提取牡荆素得率影响大小,并确定最佳提取工艺。研究结果表明:当盐酸浓度为2 mol·L-1、提取时间为40 min,固液比为1:20、超声功率为500 W、超声温度为50℃、乙醇浓度为50%时,效果最佳,得率为2.603 mg·g-1;盐酸浓度具有较大显著性,且各因素影响顺序为:盐酸浓度 > 超声功率> > 提取时间 > 固液比。  相似文献   

16.
Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.  相似文献   

17.
以栀子为原料提取栀子黄色素,将混合酶-超声波技术相结合,对栀子黄色素进行了提取的研究。为了获得提取栀子黄色素最佳工艺条件,采用响应面法组合设计试验方法,建立了酶的用量、提取温度、提取时间之间关系。结果表明,最佳工艺条件为酶的用量4.33%,提取温度61.84℃,提取时间65.06 min,在此最佳提取条件下,栀子黄色素的吸光度为0.914。  相似文献   

18.
This paper describes the enzymatic hydrolysis of solid residue of olive mill (OMRS) in a batch reactor with the Trichoderma reesei enzyme. Before enzymatic saccharification, crude lignocellulosic material is submitted to alkaline pre-treatment with NaOH. Optimum conditions of the pre-treatment (temperature of T=100 degrees C and OMRS-NaOH concentration ratio of about R=20) were determined. The optimum enzymatic conditions determined were as follows: pH of about 5, temperature of T=50 degrees C and enzyme to mass substrate mass ratio E/S=0.1g enzyme (g OMRS)(-1). The maximum saccharification yield obtained at optimum experimental conditions was about 50%. The experimental results agree with Lineweaver Burk's formula for low substrate concentrations. At substrate concentrations greater than 40gdm(-3), inhibitory effects were encountered. The kinetic constants obtained for the batch reactor were K(m)=0.1gdm(-3)min(-1) and V(m)=800gdm(-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号