首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purpose

This paper aims to demonstrate how LCA can be improved by the use of linear programming (LP) (i) to determine the optimal choice between new technologies, (ii) to identify the optimal region for supplying the feedstock, and (iii) to deal with multifunctional processes without specifying a certain main product. Furthermore, the contribution of LP in the context of consequential LCA and LCC is illustrated.

Methods

We create a mixed integer linear program (MILP) for the environmental and economic assessment of new technologies. The model is applied in order to analyze two residual beech wood-based biorefinery concepts in Germany. In terms of the optimal consequences for the system under study, the principle of the program is to find a scaling vector that minimizes the life cycle impact indicator results of the system. We further transform the original linear program to extend the assessment by life cycle costing (LCC). Thereby, two multi-objective programming methods are used, weighted goal programming and epsilon constraint method.

Results and discussion

The consequential case studies demonstrate the possibility to determine optimal locations of newly developed technologies. A high number of potential system modifications can be studied simultaneously without matrix inversion. The criteria for optimal choices are represented by the objective functions and the additional constraints such as the available feedstock in a region. By combining LCA and LCC targets within a multi-objective programming approach, it is possible to address environmental and economic trade-offs in consequential decision-making.

Conclusions

This article shows that linear programming can be used to extend standard LCA in the field of technological choices. Additional consequential research questions can be addressed such as the determination of the optimal number of new production plants and the optimal regions for supplying the resources. The modifications of the program by additional profit requirements (LCC) into a goal program and Pareto optimization problem have been identified as promising steps toward a comprehensive multi-objective LCSA.

  相似文献   

2.
Yoon  Byung-Jun  Qian  Xiaoning  Kahveci  Tamer  Pal  Ranadip 《BMC genomics》2020,21(9):1-3
Background

Haplotypes, the ordered lists of single nucleotide variations that distinguish chromosomal sequences from their homologous pairs, may reveal an individual’s susceptibility to hereditary and complex diseases and affect how our bodies respond to therapeutic drugs. Reconstructing haplotypes of an individual from short sequencing reads is an NP-hard problem that becomes even more challenging in the case of polyploids. While increasing lengths of sequencing reads and insert sizes helps improve accuracy of reconstruction, it also exacerbates computational complexity of the haplotype assembly task. This has motivated the pursuit of algorithmic frameworks capable of accurate yet efficient assembly of haplotypes from high-throughput sequencing data.

Results

We propose a novel graphical representation of sequencing reads and pose the haplotype assembly problem as an instance of community detection on a spatial random graph. To this end, we construct a graph where each read is a node with an unknown community label associating the read with the haplotype it samples. Haplotype reconstruction can then be thought of as a two-step procedure: first, one recovers the community labels on the nodes (i.e., the reads), and then uses the estimated labels to assemble the haplotypes. Based on this observation, we propose ComHapDet – a novel assembly algorithm for diploid and ployploid haplotypes which allows both bialleleic and multi-allelic variants.

Conclusions

Performance of the proposed algorithm is benchmarked on simulated as well as experimental data obtained by sequencing Chromosome 5 of tetraploid biallelic Solanum-Tuberosum (Potato). The results demonstrate the efficacy of the proposed method and that it compares favorably with the existing techniques.

  相似文献   

3.

Land use optimization as a resource allocation problem can be defined as the process of assigning different land uses to a region. Sustainable development also involves the exploitation of environmental resources, investment orientation, technology development, and industrial changes in a coordinated form. This paper studies the multi-objective sustainable land use planning problem and proposes an integrated framework, including simulation, forecasting, and optimization approaches for this problem. Land use optimization, a multifaceted process, requires complex decisions, including selection of land uses, forecasting land use allocation percentage, and assigning locations to land uses. The land use allocation percentage in the selected horizons is simulated and predicted by designing a System Dynamics (SD) model based on socio-economic variables. Furthermore, land use assignment is accomplished with a multi-objective integer programming model that is solved using augmented ε-constraint and non-dominated sorting genetic algorithm II (NSGA-II) methods. According to the results of the SD model, land use changes depend on population growth rate and labor productivity variables. Among the possible scenarios, a scenario focusing more on sustainable planning is chosen and the forecasting results of this scenario are used for optimal land use allocation. The computational results show that the augmented ε-constraint method cannot solve this problem even for medium sizes. The NSGA-II method not only solves the problem at large sizes over a reasonable time, but also generates good-quality solutions. NSGA-II showed better performance in metrics, including number of non-dominated Pareto solutions (NNPS), mean ideal distance (MID), and dispersion metric (DM). Integrated framework is implemented to allocate four types of land uses consisting of residential, commercial, industrial, and agricultural to a given region with 900 cells.

  相似文献   

4.
The aim of the present work is to use multi-objective evolutionary algorithms (MOEA) to parameterise an ecological assembly model based on Lotka–Volterra dynamics. In community assembly models, species are introduced from a pool of species according to a sequence of invasion. By manipulating the assembly sequences, we look at the structure of the final communities obtained by a multi-objective process where the goal is to optimize the productivity of the final communities. The MOEA must also meet the constraint that the communities constructed in this fashion have a specified connectance. The Non-dominated Sorting Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2) were employed to optimize sequences according to the multi-objective optimization problem. The results show that the assembly process using optimized sequences generated different community structure than those generated via random sequences. First, the assembled communities are much more productive than those obtained from random sequences. We show that this increase of productivity is due to the degree distribution of the community food web, which was reshaped by the optimization process. In addition, using identical regional species pools the MOEAs were able to generate communities of different expected connectances. These results demonstrate the effectiveness of NSGA-II and SPEA2 for optimizing parameters in ecological models.  相似文献   

5.

Auction designs have recently been adopted for static and dynamic resource provisioning in IaaS clouds, such as Microsoft Azure and Amazon EC2. However, the existing mechanisms are mostly restricted to simple auctions, single-objective, offline setting, one-sided interactions either among cloud users or cloud service providers (CSPs), and possible misreports of cloud user’s private information. This paper proposes a more realistic scenario of online auctioning for IaaS clouds, with the unique characteristics of elasticity for time-varying arrival of cloud user requests under the time-based server maintenance in cloud data centers. We propose an online truthful double auction technique for balancing the multi-objective trade-offs between energy, revenue, and performance in IaaS clouds, consisting of a weighted bipartite matching based winning-bid determination algorithm for resource allocation and a Vickrey–Clarke–Groves (VCG) driven algorithm for payment calculation of winning bids. Through rigorous theoretical analysis and extensive trace-driven simulation studies exploiting Google cluster workload traces, we demonstrate that our mechanism significantly improves the performance while promising truthfulness, heterogeneity, economic efficiency, individual rationality, and has a polynomial-time computational complexity.

  相似文献   

6.

Artificial Bee Colony (ABC) algorithm is a nature-inspired algorithm that showed its efficiency for optimizations. However, the ABC algorithm showed some imbalances between exploration and exploitation. In order to improve the exploitation and enhance the convergence speed, a multi-population ABC algorithm based on global and local optimum (namely MPGABC) is proposed in this paper. First, in MPGABC, the initial population is generated using both chaotic systems and opposition-based learning methods. The colony in MPGABC is divided into several sub-populations to increase diversity. Moreover, the solution search mechanism is modified by introducing global and local optima in the solution search equations of both employed and onlookers. The scout bees in the proposed algorithm are generated similarly to the initial population. Finally, the proposed algorithm is compared with several state-of-art ABC algorithm variants on a set of 13 classical benchmark functions. The experimental results show that MPGABC competes and outperforms other ABC algorithm variants.

  相似文献   

7.
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.  相似文献   

8.
This paper presents a new scheme for training MLPs which employs a relaxation method for multi-objective optimization. The algorithm works by obtaining a reduced set of solutions, from which the one with the best generalization is selected. This approach allows balancing between the training error and norm of network weight vectors, which are the two objective functions of the multi-objective optimization problem. The method is applied to classification and regression problems and compared with Weight Decay (WD), Support Vector Machines (SVMs) and standard Backpropagation (BP). It is shown that the systematic procedure for training proposed results on good generalization neural models, and outperforms traditional methods.  相似文献   

9.
Abstract

Needle insertion plays an important part in the process of corneal graft surgery. In this paper, a three-dimensional symmetry model of the human cornea is constructed using the finite element method. Simplification of specific optic physiology is defined for the model: The cornea constrained by the sclera is presented as two layers consisting of epithelium and stroma. A failure criterion based on the distortion energy theory has been proposed to predict the insertion process of the needle. The simulation results show a good agreement with the experimental data reported in the literature. The influence of needling conditions (e.g. insertion velocity, rotation parameters and vibration parameters) on the insertion force are then discussed. In addition, a multi-objective optimization based on particle swarm optimization (PSO) is applied to reduce the insertion force. The numerical results provide guidelines for selecting the motion parameters of the needle and a potential basis for further developments in robot-assisted surgery.  相似文献   

10.
A multi-objective optimization formulation that reflects the multi-substrate optimization in a multi-product fermentation is proposed in this work. This formulation includes the application of ε-constraint to generate the trade-off solution for the enhancement of one selective product in a multi-product fermentation, with simultaneous minimization of the other product within a threshold limit. The formulation has been applied to the fed-batch fermentation of Aspergillus niger that produces a number of enzymes during the course of fermentation, and of these, catalase and protease enzyme expression have been chosen as the enzymes of interest. Also, this proposed formulation has been applied in the environment of three control variables, i.e. the feed rates of sucrose, nitrogen source and oxygen and a set of trade-off solutions have been generated to develop the pareto-optimal curve. We have developed and experimentally evaluated the optimal control profiles for multiple substrate feed additions in the fed-batch fermentation of A. niger to maximize catalase expression along with protease expression within a threshold limit and vice versa. An increase of about 70% final catalase and 31% final protease compared to conventional fed-batch cultivation were obtained. Novel methods of oxygen supply through liquid-phase H2O2 addition have been used with a view to overcome limitations of aeration due to high gas–liquid transport resistance. The multi-objective optimization problem involved linearly appearing control variables and the decision space is constrained by state and end point constraints. The proposed multi-objective optimization is solved by differential evolution algorithm, a relatively superior population-based stochastic optimization strategy.  相似文献   

11.
Zusammenfassung Die NADH-Diaphorase wurde an 725 gesunden Probanden mit Hilfe der Stärkegelelektrophorese untersucht. Zwei verschiedene Varianten wurden beobachtet: eine heterozygot schnelle (DIA 2-1) und eine heterozygot langsame (DIA 3-1). Die Genhäufigkeiten sind: DIA2=0,0021; DIA3=0,0007.
Genetically determined variants of NADH-diaphorase
Summary By means of starchgel-electrophoresis a screening for variants of NADH-Diaphorase was carried out within a sample of 725 healthy probands. Two kinds of genetically determined variants have been observed: a heterozygous phenotype with greater mobility (DIA 2-1) and a heterozygous phenotype with slower mobility (DIA 3-1). The gene-frequencies are estimated so far as 0.0021 (DIA2) and 0.0007 (DIA3).


Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

12.

Brugada syndrome (BrS) is a rare hereditary arrhythmia syndrome that increases an individual’s risk for sudden cardiac death (SCD) due to ventricular fibrillation. This disorder is regarded as a notable cause of death in individuals aged less than 40 years, responsible for up to 40% of sudden deaths in cases without structural heart disease, and is reported to be an endemic in Asian countries. Mutations in SCN5A are found in approximately 30% of patients with Brugada syndrome. This study aimed to investigate mutations in the SCN5A gene in a group of Iranian Brugada syndrome patients. Nine probands (n = 9, male, mean age = 39) diagnosed with Brugada syndrome were enrolled in this study. Exon 2 to 29 were amplified by PCR and subjected to direct sequencing. Eight in silico prediction tools were used to anticipate the effects of non-synonymous variants. Seven known polymorphisms and 2 previously reported disease-causing mutations, including H558R and G1406R, were found in the studied cases. Twenty novel variants were identified: 15 missense, 2 frameshift, 2 synonymous, and one nonsense variants. In silico tools predicted 11 non-synonymous variants to have damaging effects, whereas frameshift and nonsense variants were considered inherently pathogenic. The novel variants identified in this study, alongside previously reported mutations, are highly likely to be the cause of the Brugada syndrome phenotype observed in the patient group. Further analysis is required to understand the physiological effects caused by these variants.

  相似文献   

13.
Hu  Jialu  He  Junhao  Li  Jing  Gao  Yiqun  Zheng  Yan  Shang  Xuequn 《BMC genomics》2019,20(13):1-8
Background

To infer gene regulatory networks (GRNs) from gene-expression data is still a fundamental and challenging problem in systems biology. Several existing algorithms formulate GRNs inference as a regression problem and obtain the network with an ensemble strategy. Recent studies on data driven dynamic network construction provide us a new perspective to solve the regression problem.

Results

In this study, we propose a data driven dynamic network construction method to infer gene regulatory network (D3GRN), which transforms the regulatory relationship of each target gene into functional decomposition problem and solves each sub problem by using the Algorithm for Revealing Network Interactions (ARNI). To remedy the limitation of ARNI in constructing networks solely from the unit level, a bootstrapping and area based scoring method is taken to infer the final network. On DREAM4 and DREAM5 benchmark datasets, D3GRN performs competitively with the state-of-the-art algorithms in terms of AUPR.

Conclusions

We have proposed a novel data driven dynamic network construction method by combining ARNI with bootstrapping and area based scoring strategy. The proposed method performs well on the benchmark datasets, contributing as a competitive method to infer gene regulatory networks in a new perspective.

  相似文献   

14.
15.
The application of multi-objective optimisation to evolutionary robotics is receiving increasing attention. A survey of the literature reveals the different possibilities it offers to improve the automatic design of efficient and adaptive robotic systems, and points to the successful demonstrations available for both task-specific and task-agnostic approaches (i.e., with or without reference to the specific design problem to be tackled). However, the advantages of multi-objective approaches over single-objective ones have not been clearly spelled out and experimentally demonstrated. This paper fills this gap for task-specific approaches: starting from well-known results in multi-objective optimisation, we discuss how to tackle commonly recognised problems in evolutionary robotics. In particular, we show that multi-objective optimisation (i) allows evolving a more varied set of behaviours by exploring multiple trade-offs of the objectives to optimise, (ii) supports the evolution of the desired behaviour through the introduction of objectives as proxies, (iii) avoids the premature convergence to local optima possibly introduced by multi-component fitness functions, and (iv) solves the bootstrap problem exploiting ancillary objectives to guide evolution in the early phases. We present an experimental demonstration of these benefits in three different case studies: maze navigation in a single robot domain, flocking in a swarm robotics context, and a strictly collaborative task in collective robotics.  相似文献   

16.

Fog-cloud computing is a promising distributed model for hosting ever-increasing Internet of Things (IoT) applications. IoT applications should meet different characteristics such as deadline, frequency rate, and input file size. Fog nodes are heterogeneous, resource-limited devices and cannot accommodate all the IoT applications. Due to these difficulties, designing an efficient algorithm to deploy a set of IoT applications in a fog-cloud environment is very important. In this paper, a fuzzy approach is developed to classify applications based on their characteristics then an efficient heuristic algorithm is proposed to place applications on the virtualized computing resources. The proposed policy aims to provide a high quality of service for IoT users while the profit of fog service providers is maximized by minimizing resource wastage. Extensive simulation experiments are conducted to evaluate the performance of the proposed policy. Results show that the proposed policy outperforms other approaches by improving the average response time up to 13%, the percentage of deadline satisfied requests up to 12%, and the resource wastage up to 26%.

  相似文献   

17.
In this paper, we propose a worst-case weighted approach to the multi-objective n-person non-zero sum game model where each player has more than one competing objective. Our “worst-case weighted multi-objective game” model supposes that each player has a set of weights to its objectives and wishes to minimize its maximum weighted sum objectives where the maximization is with respect to the set of weights. This new model gives rise to a new Pareto Nash equilibrium concept, which we call “robust-weighted Nash equilibrium”. We prove that the robust-weighted Nash equilibria are guaranteed to exist even when the weight sets are unbounded. For the worst-case weighted multi-objective game with the weight sets of players all given as polytope, we show that a robust-weighted Nash equilibrium can be obtained by solving a mathematical program with equilibrium constraints (MPEC). For an application, we illustrate the usefulness of the worst-case weighted multi-objective game to a supply chain risk management problem under demand uncertainty. By the comparison with the existed weighted approach, we show that our method is more robust and can be more efficiently used for the real-world applications.  相似文献   

18.

Internet of Things (IoT) has introduced new applications and environments. Smart Home provides new ways of communication and service consumption. In addition, Artificial Intelligence (AI) and deep learning have improved different services and tasks by automatizing them. In this field, reinforcement learning (RL) provides an unsupervised way to learn from the environment. In this paper, a new intelligent system based on RL and deep learning is proposed for Smart Home environments to guarantee good levels of QoE, focused on multimedia services. This system is aimed to reduce the impact on user experience when the classifying system achieves a low accuracy. The experiments performed show that the deep learning model proposed achieves better accuracy than the KNN algorithm and that the RL system increases the QoE of the user up to 3.8 on a scale of 10.

  相似文献   

19.
This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP), which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF) problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII) and multi-objective ABC (MOABC), are presented to illustrate the effectiveness and robustness of the proposed method.  相似文献   

20.

Background

Selecting a subset of relevant properties from a large set of features that describe a dataset is a challenging machine learning task. In biology, for instance, the advances in the available technologies enable the generation of a very large number of biomarkers that describe the data. Choosing the more informative markers along with performing a high-accuracy classification over the data can be a daunting task, particularly if the data are high dimensional. An often adopted approach is to formulate the feature selection problem as a biobjective optimization problem, with the aim of maximizing the performance of the data analysis model (the quality of the data training fitting) while minimizing the number of features used.

Results

We propose an optimization approach for the feature selection problem that considers a “chaotic” version of the antlion optimizer method, a nature-inspired algorithm that mimics the hunting mechanism of antlions in nature. The balance between exploration of the search space and exploitation of the best solutions is a challenge in multi-objective optimization. The exploration/exploitation rate is controlled by the parameter I that limits the random walk range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to decrease the exploration rate as the optimization progresses. The quasi-linear decrease in the variable I may lead to immature convergence in some cases and trapping in local minima in other cases. The chaotic system proposed here attempts to improve the tradeoff between exploration and exploitation. The methodology is evaluated using different chaotic maps on a number of feature selection datasets. To ensure generality, we used ten biological datasets, but we also used other types of data from various sources. The results are compared with the particle swarm optimizer and with genetic algorithm variants for feature selection using a set of quality metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号