首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influences of inbreeding and genetics on telomere length in mice   总被引:2,自引:0,他引:2  
We measured telomere lengths of blood leukocytes in several inbred and outbred mammalian species, using a telomere-specific fluorescent probe and flow cytometry. Humans, non-human primates, and three outbred populations of Peromyscus mice (Peromyscus leucopus, Peromyscus maniculatus, and Peromyscus polionotus) have short telomeres. Two common strains of laboratory mice, C57BL/6J and DBA/2J, have telomeres several times longer than most other mammals surveyed. Moreover, the two inbred laboratory mouse strains display significantly different telomere lengths, suggesting the existence of strain-specific genetic determinants. To further examine the effects of inbreeding, we studied three Peromyscus leucopus inbred lines (GS109, GS16A1, and GS16B), all derived from the outbred P. leucopus stock. Telomeres of all three inbred lines are significantly lengthened relative to outbred P. leucopus, and the three lines display strain-specific significantly different telomere lengths, much like the C57BL/6J and DBA/2J strains of M. musculus. To further characterize the genetic inheritance of telomere length, we carried out several crosses to obtain hybrid F1 mice between parental strains displaying the phenotype of long and short telomeres. In all F1 mice assayed, peripheral blood leukocyte telomere length was intermediate to that of the parents. Additionally, we generated F2 mice from a cross of the (P. leucopus outbred × GS16B)F1. Based on the distribution of telomere length in the F2 population, we determined that more than five loci contribute to telomere length regulation in Peromyscus. We concluded that inbreeding, through unknown mechanisms, results in the elongation of telomeres, and that telomere length for a given species and/or sub-strain is genetically determined by multiple segregating loci.  相似文献   

2.
Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome‐wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life.  相似文献   

3.
Inbreeding is widely hypothesized to shape mating systems and population persistence, but such effects will depend on which traits show inbreeding depression. Population and evolutionary consequences could be substantial if inbreeding decreases sperm performance and hence decreases male fertilization success and female fertility. However, the magnitude of inbreeding depression in sperm performance traits has rarely been estimated in wild populations experiencing natural variation in inbreeding. Further, the hypothesis that inbreeding could increase within‐ejaculate variation in sperm traits and thereby further affect male fertilization success has not been explicitly tested. We used a wild pedigreed song sparrow (Melospiza melodia) population, where frequent extrapair copulations likely create strong postcopulatory competition for fertilization success, to quantify effects of male coefficient of inbreeding (f) on key sperm performance traits. We found no evidence of inbreeding depression in sperm motility, longevity, or velocity, and the within‐ejaculate variance in sperm velocity did not increase with male f. Contrary to inferences from highly inbred captive and experimental populations, our results imply that moderate inbreeding will not necessarily constrain sperm performance in wild populations. Consequently, the widely observed individual‐level and population‐level inbreeding depression in male and female fitness may not stem from reduced sperm performance in inbred males.  相似文献   

4.
Mating between relatives often results in negative fitness consequences or inbreeding depression. However, the expression of inbreeding in populations of wild cooperative mammals and the effects of environmental, maternal and social factors on inbreeding depression in these systems are currently not well understood. This study uses pedigree‐based inbreeding coefficients from a long‐term study of meerkats (Suricata suricatta) in South Africa to reveal that 44% of the population have detectably non‐zero (F > 0) inbreeding coefficients. 15% of these inbred individuals were the result of moderate inbreeding (F 0.125), although such inbreeding events almost solely occurred when mating individuals had no prior experience of each other. Inbreeding depression was evident for a range of traits: pup mass at emergence from the natal burrow, hind‐foot length, growth until independence and juvenile survival. However, we found no evidence of significant inbreeding depression for skull and forearm length or for pup survival. This research provides a rare investigation into inbreeding in a cooperative mammal, revealing high levels of inbreeding, considerable negative consequences and complex interactions with the social environment.  相似文献   

5.
For two populations of Alaskan steelhead (Oncorhynchus mykiss) of common ancestry we evaluated effects of inbreeding in second-generation descendants of wild fish by comparing progeny of full-sibling matings to those of non-inbred controls to determine if a single event of close inbreeding has significant effects on survival and growth in captivity or the wild. In captivity, both survival and size were highly variable between inbred and control types within each line and among the five broods during five periods of freshwater culture. However, no consistent patterns of inbreeding enhancement or depression between types within lines across years were evident. In contrast, in the wild marine environment, 34 of 34 pairwise comparisons between inbred and control types in body size of returning adults after 2 or 3 years at liberty in the ocean were consistent with inbreeding depression with significant inbreeding depression varying from 2.9% for female length to 20.0% for female weight. Survival of marked juveniles (smolts) to adults in the wild marine environment was consistently and significantly lower in inbred types for both lines, for an average inbreeding depression of 78.8%. The results underscore the potential problems that can arise from using protective culture technologies, including captive broodstocks, to supplement endangered populations, and they highlight the genetic hazards that can be faced by small wild populations. This study demonstrates that high natural mortality or selection increases the amount of inbreeding depression detected in survival. Inbreeding effects on survival and growth in captivity can be poor indicators of survival and growth in a wild marine environment.  相似文献   

6.
The role of telomere shortening to explain the occurrence of Robertsonian (Rb) fusions, as well as the importance of the average telomere length vs. the proportion of short telomeres, especially in nature populations, is largely unexplored. In this study, we have analysed telomere shortening in nine wild house mice from the Barcelona Rb system with diploid numbers ranging from 29 to 40 chromosomes. We also included two standard (2n = 40) laboratory mice for comparison. Our data showed that the average telomere length (considering all chromosomal arms) is influenced by both the diploid number and the origin of the mice (wild vs. laboratory). In detail, we detected that wild mice from the Rb Barcelona system (fused and standard) present shorter telomeres than standard laboratory mice. However, only wild mice with Rb fusions showed a high proportion of short telomeres (only in p‐arms), thus revealing the importance of telomere shortening in the origin of the Rb fusions in the Barcelona system. Overall, our study confirms that the number of critically short telomeres, and not a simple reduction in the average telomere length, is more likely to lead to the origin of Rb fusions in the Barcelona system and ultimately in nature.  相似文献   

7.
Attempts to conserve threatened species by establishing new populations via reintroduction are controversial. Theory predicts that genetic bottlenecks result in increased mating between relatives and inbreeding depression. However, few studies of wild sourced reintroductions have carefully examined these genetic consequences. Our study assesses inbreeding and inbreeding depression in a free-living reintroduced population of an endangered New Zealand bird, the hihi (Notiomystis cincta). Using molecular sexing and marker-based inbreeding coefficients estimated from 19 autosomal microsatellite loci, we show that (i) inbreeding depresses offspring survival, (ii) male embryos are more inbred on average than female embryos, (iii) the effect of inbreeding depression is male-biased and (iv) this population has a substantial genetic load. Male susceptibility to inbreeding during embryo and nestling development may be due to size dimorphism, resulting in faster growth rates and more stressful development for male embryos and nestlings compared with females. This work highlights the effects of inbreeding at early life-history stages and the repercussions for the long-term population viability of threatened species.  相似文献   

8.
Inbreeding is common in small and threatened populations and often has a negative effect on individual fitness and genetic diversity. Thus, inbreeding can be an important factor affecting the persistence of small populations. In this study, we investigated the effects of inbreeding on fitness in a small, wild population of house sparrows (Passer domesticus) on the island of Aldra, Norway. The population was founded in 1998 by four individuals (one female and three males). After the founder event, the adult population rapidly increased to about 30 individuals in 2001. At the same time, the mean inbreeding coefficient among adults increased from 0 to 0.04 by 2001 and thereafter fluctuated between 0.06 and 0.10, indicating a highly inbred population. We found a negative effect of inbreeding on lifetime reproductive success, which seemed to be mainly due to an effect of inbreeding on annual reproductive success. This resulted in selection against inbred females. However, the negative effect of inbreeding was less strong in males, suggesting that selection against inbred individuals is at least partly sex specific. To examine whether individuals avoided breeding with close relatives, we compared observed inbreeding and kinship coefficients in the population with those obtained from simulations of random mating. We found no significant differences between the two, indicating weak or absent inbreeding avoidance. We conclude that there was inbreeding depression in our population. Despite this, birds did not seem to actively avoid mating with close relatives, perhaps as a consequence of constraints on mating possibilities in such a small population.  相似文献   

9.
Although evidence of inbreeding depression in wild populations is well established, the impact of genetic purging in the wild remains controversial. The contrasting effects of inbreeding depression, fixation of deleterious alleles by genetic drift, and the purging of deleterious alleles via natural selection mean that predicting fitness outcomes in populations subjected to prolonged bottlenecks is not straightforward. We report results from a long‐term pedigree study of arguably the world's most inbred wild species of bird: the Chatham Island black robin Petroica traversi, in which conditions were ideal for purging to occur. Contrary to expectations, black robins showed a strong, negative relationship between inbreeding and juvenile survival, yielding lethal equivalents (2B) of 6.85. We also determined that the negative relationship between inbreeding and survival did not appear to be mediated by levels of ancestral inbreeding and may be attributed in part to unpurged lethal recessives. Although the black robin demographic history provided ideal conditions for genetic purging, our results show no clear evidence of purging in the major life‐history trait of juvenile survival. Our results also show no evidence of fixation of deleterious alleles in juvenile survival, but do confirm that continued high levels of contemporary inbreeding in a historically inbred population could lead to additional severe inbreeding depression.  相似文献   

10.
In a consistently urbanizing world, anthropogenic noise has become almost omnipresent, and there are increasing evidence that high noise levels can have major impacts on wildlife. While the effects of anthropogenic noise exposure on adult animals have been widely studied, surprisingly, there has been little consideration of the effects of noise pollution on developing organisms. Yet, environmental conditions experienced in early life can have dramatic lifelong consequences for fitness. Here, we experimentally manipulated the acoustic environment of free-living house sparrows (Passer domesticus) breeding in nest boxes. We focused on the impact of such disturbance on nestlings’ telomere length and fledging success, as telomeres (the protective ends of chromosomes) appear to be a promising predictor of longevity. We showed that despite the absence of any obvious immediate consequences (growth and fledging success), nestlings reared under traffic noise exposure exhibited reduced telomere lengths compared with their unexposed neighbours. Although the mechanisms responsible for this effect remain to be determined, our results provide the first experimental evidence that noise alone can affect a wild vertebrate''s early-life telomere length. This suggests that noise exposure may entail important costs for developing organisms.  相似文献   

11.
Attempts to understand the causes of variation in senescence trajectories would benefit greatly from biomarkers that reflect the progressive declines in somatic integrity (SI) that lead to senescence. While telomere length has attracted considerable interest in this regard, sources of variation in telomere length potentially unrelated to declines in SI could, in some contexts, leave telomere attrition rates a more effective biomarker than telomere length alone. Here, we investigate whether telomere length and telomere attrition rates predict the survival of wild white‐browed sparrow‐weaver nestlings (Plocepasser mahali). Our analyses of telomere length reveal counterintuitive patterns: telomere length soon after hatching negatively predicted nestling survival to fledging, a pattern that appears to be driven by differentially high in‐nest predation of broods with longer telomeres. Telomere length did not predict survival outside this period: neither hatchling telomere length nor telomere length in the mid‐nestling period predicted survival from fledging to adulthood. Our analyses using within‐individual telomere attrition rates, by contrast, revealed the expected relationships: nestlings that experienced a higher rate of telomere attrition were less likely to survive to adulthood, regardless of their initial telomere length and independent of effects of body mass. Our findings support the growing use of telomeric traits as biomarkers of SI, but lend strength to the view that longitudinal assessments of within‐individual telomere attrition since early life may be a more effective biomarker in some contexts than telomere length alone.  相似文献   

12.
Genetic estimates of the variability of immune responses are rarely examined in natural populations because of confounding environmental effects. As a result, and because of the difficulty of pinpointing the genetic determinants of immunity, no study has to our knowledge examined the contribution of specific genes to the heritability of an immune response in wild populations. We cross-fostered nestling house sparrows to disrupt the association between genetic and environmental effects and determine the heritability of the response to a classic immunological test, the phytohaemagglutinin (PHA)-induced skin swelling. We detected significant heritability estimates of the response to PHA, of body mass and tarsus length when nestlings were 5 and 10 days old. Variation at Mhc genes, however, did not explain a significant portion of the genetic variation of nestling swelling to PHA. Our results suggest that while PHA-induced swelling is influenced by the nest of origin, the importance of additive genetic variation relative to non-additive genetic variation and the genetic factors that influence the former in wild populations still need to be identified for this trait.  相似文献   

13.
Edge populations are frequently small and subject to stressful conditions that may compromise their long‐term viability. Inbreeding can play an important role in small populations by reducing genetic diversity, leading to the fixation of deleterious mutations and, finally, carrying populations to an extinction vortex through inbreeding depression. Although stressful conditions may enhance the intensity of inbreeding depression, evidence to date is inconclusive in marginal habitats. Local adaptation, promoting native genotypes, and gene flow, reducing allele fixation, are two factors that can have different effects on the intensity of inbreeding depression. Three populations of Silene ciliata distributed across an elevation gradient at the southernmost edge of the species distribution were used for this study. Several fitness components – germination, survival and growth rate – were compared between inbred seedlings and seedlings from within‐ and between‐population outcrosses, both in the field and controlled conditions. Overall, inbred seedlings had lower fitness than outcrossed seedlings. For most of the variables analysed, similar inbreeding depression effects were found in all three populations, but, for seed weight and seedling survival curve, inbreeding depression was only found in the low altitude population. Similarly, inbreeding depression was more evident in the field than in controlled chamber conditions. Outcrosses between populations contributed to an increase in most fitness estimates and populations, suggesting that the benefits of reducing inbreeding depression overrode the potentially deleterious effects of disrupting local adaptation. Our results suggest that inbreeding depression plays an important role in the fitness of early life stages of Silene ciliata at its southernmost distribution limit, but only provided partial support to the hypothesis that stressful conditions enhance the expression of inbreeding depression.  相似文献   

14.
Telomeres, DNA‐protein structures at chromosome ends, shorten with age, and telomere length has been linked to age‐related diseases and survival. In vitro studies revealed that the shortest telomeres trigger cell senescence, but whether the shortest telomeres are also the best biomarker of ageing is not known. We measured telomeres in erythrocytes of wild common terns Sterna hirundo using terminal restriction fragment analysis. This yields a distribution of telomere lengths for each sample, and we investigated how different telomere subpopulations (percentiles) varied in their relation to age and fitness proxies. Longer telomeres within a genome lost more base pairs with age and were better predictors of survival than shorter telomeres. Likewise, fitness proxies such as arrival date at the breeding grounds and reproductive success were best predicted by telomere length at the higher percentiles. Our finding that longer telomeres within a genome predict fitness components better than the shorter telomeres indicates that they are a more informative ageing biomarker. This finding contrasts with the fact that cell senescence is triggered by the shortest telomeres. We suggest that this paradox arises, because longer telomeres lose more base pairs per unit time and thus better reflect the various forms of stress that accelerate telomere shortening, and that telomeres primarily function as biomarker because their shortening reflects cumulative effects of various stressors rather than reflecting telomere‐induced cell senescence.  相似文献   

15.
The nematode Caenorhabditis elegans, after completing its developmental stages and a brief reproductive period, spends the remainder of its adult life as an organism consisting exclusively of post-mitotic cells. Here we show that telomere length varies considerably in clonal populations of wild-type worms, and that these length differences are conserved over at least ten generations, suggesting a length regulation mechanism in cis. This observation is strengthened by the finding that the bulk telomere length in different worm strains varies considerably. Despite the close correlation of telomere length and clonal cellular senescence in mammalian cells, nematodes with long telomeres were neither long lived, nor did worm populations with comparably short telomeres exhibit a shorter life span. Conversely, long-lived daf-2 and short-lived daf-16 mutant animals can have either long or short telomeres. Telomere length of post-mitotic cells did not change during the aging process, and the response of animals to stress was found independent of telomere length. Collectively, our data indicate that telomere length and life span can be uncoupled in a post-mitotic setting, suggesting separate pathways for replication-dependent and -independent aging.  相似文献   

16.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

17.
1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.  相似文献   

18.
Aging negatively affects individual survival and reproduction; consequently, characterizing the factors behind aging can enhance our understanding of fitness in wild populations. The drivers of biological age are diverse, but often related to factors like chronological age or sex of the individual. Recently, however, environmental factors have been shown to strongly influence biological age. To explore the relative importance of these influences on biological aging in a free-ranging and long-lived vertebrate, we quantified the length of telomeres—highly conserved DNA sequences that cap the ends of eukaryotic chromosomes and a useful molecular marker of biological age—for black bears sampled throughout Colorado, and measured a variety of environmental variables (habitat productivity, human development, latitude, elevation) and individual characteristics (age, sex, body size, genetic relatedness). Our extensive sampling of bears (n = 245) revealed no relationships between telomere length and any individual characteristics. Instead, we found a broad-scale latitudinal pattern in telomere length, with bears in northern Colorado possessing shorter telomeres. Our results suggest that environmental characteristics overwhelm individual ones in determining biological aging for this large carnivore.  相似文献   

19.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

20.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号