首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the daily rectal temperature rhythms during May and October–November in three female subjects leading normal lives under natural conditions disclosed that although a rhythm of rectal temperature existed in all three subjects in both seasons, the temperature level seems to be lower in October–November than in May, especially during the nighttime. The phasing of the rectal temperature rhythm did not seem to differ between the two seasons.  相似文献   

2.
Continuous accurate attainment of the body temperature of foals is important to detect early stages of severe heat stress or fever due to a systemic illness. Among a number of methods to measure body temperature, measuring rectal temperature with a digital thermometer is most frequently used due to being relatively fast and simple method. It is also comparatively accurate and correlates well with the core body temperature. However, this method requires restraining the foal for a few seconds to obtain the temperature, and it can be dangerous for the handling person. Percutaneous thermal sensing microchips (PTSMs) are a means of monitoring the body temperature of horses, which offers a non-invasive, hygienic, quick, and accurate way to measure body temperature and provide an identification number for each individual, once it is implanted. This study tested the hypothesis that PTSM has a strong relationship with a conventional body temperature measurement, i.e., measuring rectal temperature with a digital thermometer of foals during summer seasons. Thirty-two foals in three consecutive foaling seasons (2018, 2019, and 2020 season) were implanted a PTSM into the right pectoral muscle, the right splenius muscle, the right gluteal muscle, and the nuchal ligament as early as two weeks after birth. The four PTSM temperatures, rectal temperature, and climate conditions (air temperature, relative humidity, and wet-bulb globe temperature) were obtained simultaneously during the three summer seasons and paired for comparison analysis. Among the PTSM temperatures, the pectoral muscle had the highest correlation and the least differences with rectal temperature. Using PTSM was safe, easy, and reliable for attaining body temperature in foals.  相似文献   

3.
To investigate the daily rhythm of rectal and vaginal temperature, we used six mongrel dogs with a mean body weight of 15±3 kg, aged between 2 and 3 years old. Rectal and vaginal temperatures were recorded every 3 h over 48-h period during three different lighting regimes: natural light/dark (L/D) cycle (sunrise 06:25, sunset 17:05), constant light (L/L) and constant darkness (D/D). A daily rhythm of rectal temperature was observed in both days of monitoring in all experimental conditions. Vaginal temperature showed a daily rhythmicity in L/D and D/D cycle. During the L/L cycle, daily rhythm was disrupted. Rhythmic parameters (MESOR, amplitude, acrophase and robustness) did not change between the different photoperiod and the site of temperature collection. In conclusion, the monitoring of vaginal temperature can be considered a valid alternative to the monitoring of body temperature as well as rectal temperature under natural lighting conditions in canine medicine.  相似文献   

4.
Heart rate and core temperature are elevated by physical activity and reduced during rest and/or sleep. These masking effects may confound interpretation of rhythm waveforms, particularly in situations where the rest-activity rhythm has a different period from that of the core temperature rhythm. Such desynchronization often occurs temporarily as an individual adjusts to a new work shift or to a new time zone following rapid transmeridian travel, making it difficult to assess the impact of such schedule changes on the circadian system. The present experiments were designed to estimate the magnitude of these masking effects, by monitoring the heart rate, rectal temperature, and nondominant wrist activity (2-min samples) of 12 male subjects during 6 days of normal routine outside the lab and during 6 days of strict bedrest. Subjects also kept sleep, dietary, and exercise logs throughout the study. Average (20-min) waveforms were computed for each subject and each rhythm, at home and in bedrest. In addition, data were partitioned according to self-reported sleep and wake times and were analyzed separately for each state. Average waveform comparisons indicated that about 45% of the range of the circadian heart rate rhythm during normal routine was attributable to the masking effects of activity during wake, which also produced a 16% elevation in mean heart rate during wake and an 11% increase in mean heart rate overall. (Analysis of variance indicated that mean heart rate during sleep at home was not significantly different from the mean during sleep in bedrest.) On average, about 14% of the range of the circadian temperature rhythm during normal routine was attributable to the effects of activity masking. However, the change in range of the temperature rhythm, from home to bedrest, was very variable between subjects (-41% to +13%). This variability was not accounted for by age or by reported frequency of exercise at home. Normal activity during wake increased the mean temperature during wake by an average of 0.16 degrees C and the overall mean by about 0.12 degrees C. (Analysis of variance indicated that mean temperature during sleep at home was not significantly different from the mean during sleep in bedrest.) A 10-hr "night" (lights-off from 2200 to 0800 hr) was provided during bedrest, within which subjects could select their own sleep times. Times of sleep onset and wake onset were not significantly different between home and bedrest.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Fourteen healthy subjects have been studied in an isolation unit while living on a 30h “day” (20h awake, 10h asleep) for 14 (solar) days but while aware of real time. Waking activities were sedentary and included reading, watching television, and so forth. Throughout, regular recordings of rectal temperature were made, and in a subgroup of 6 subjects, activity was measured by a wrist accelerometer. Temperature data have been subjected to cosinor analysis after “purification,” a method that enables the endogenous (clock-driven) and exogenous (activity-driven) components of the circadian rhythm to be assessed. Moreover, the protocol enables effects due to the circadian rhythm and time-since-waking to be separated. Results showed that activity was slightly affected by the endogenous temperature rhythm. Also, the masking effects on body temperature exerted by the exogenous factors appeared to be less than average in the hours before and just after the peak of the endogenous temperature rhythm. This has the effect of producing a temperature plateau rather than a peak during the daytime. The implications of this for mental performance and sleep initiation are discussed. (Chronobiology International, 13(4), 261-271, 1996)  相似文献   

6.
Oestrus Ovis is a common sheep parasite in the Mediterranean region. This study was carried out in the Ebro River Valley near Zaragoza (northeast Spain) using tracer animals to describe the seasons when infestation is more likely. Based on that information and an analysis of the evolution of the parasite within the host, we suggest the most appropriate time for treatment. Adult instars appeared in May until November and there was a diapause beginning in October-November and as least until February, so it is suggested than sheep be treated with larvicide in December.  相似文献   

7.
Plasma prolactin and rectal temperature show a circadian rhythm in newborn sheep raised under continuous light. Melatonin lowers the concentration of plasma prolactin but it is not known if it affects its circadian rhythm. To detect whether melatonin acts on the circadian system we studied the effect of a subcutaneous melatonin implant in the circadian rhythms of prolactin and rectal temperature in newborn lambs raised under continuous light. We placed catheters in the pedal artery and vein in 9 newborn lambs (2-5 days of age). A subcutaneous melatonin implant was placed in 4 of the lambs at 9-12 days of age. Blood samples and rectal temperature measurements were obtained hourly for a period of 24 h, 11-15 days after the implant, at 20-27 days of age. To avoid interferences of heparin in our melatonin assay, serum melatonin concentration was measured before and during the implant in three additional newborns. Prolactin and melatonin were measured by RIA. Melatonin concentrations were 52.8 +/- 45.9 pg/ml (day) and 315.5 +/- 77.0 pg/ml (night) before treatment (SEM, P less than 0.001), and increased to 594.1 +/- 54.5 pg/ml after placing the implant (there was no difference in melatonin concentration between day and night during the time that the implant was in place). Melatonin had no effect on rectal temperature or its rhythm, but decreased basal plasma prolactin concentration (control: 97.5 +/- 11.3 ng/ml; treated: 25.1 +/- 2.4 ng/ml, P less than 0.001) and abolished the prolactin circadian rhythm, (Cosinor analysis): control: log prolactin (ng/ml) = 1.8 + 0.26 cos 15 (t - 11.16), p = 0.05; treated: log prolactin (ng/ml) = 1.2 + 0.14 cos 15 (t - 9.43), P = 0.36.  相似文献   

8.
R A Wever 《Chronobiologia》1980,7(3):303-327
In special isolation units, circadian rhythms of human subjects have been investigated under the influence of artificial 24-h Zeitgebers, with 6-h advance and 6-h delay shifts of the Zeitgeber simulating time zone shifts. In most cases, the biological rhythms follow the Zeitgeber shifts in the course of several days: in rare cases, advancing Zeitgeber shifts are followed by delaying shifts of the biological rhythms, either of all variables or, partitioning, of only some of the variables. The rhythm of activity is re-entrained after both Zeitgeber shifts within a few days, independent of the shift direction. The rhythm of rectal temperature needs more time for re-entrainment than the activity rhythm; the rate of re-entrainment is consistently higher after advance than after delay shifts ('direction asymmetry'). Mean value and amplitude of the rectal temperature rhythm are, for some days, reduced after the advance but not after the delay Zeitgeber shift; among the different subjects, the reduction in amplitude is significantly correlated with the direction asymmetry. The rhythm of psychomotor performance (computation speed) re-entrains in parallel to that of rectal temperature; i.e. the performance level is decreased after advance but not after delay shifts. The direction asymmetry in the re-entrainment rates seems to contradict findings in flight experiments where this rate is mostly higher after westward than after eastward flights. Careful considerations, however, show that differences in the re-entrainment behavior after real and simulated time zone shifts disappear when the experimental designs are approximated and when identical procedures of analyzing the data are applied. The results of the time shift experiments are, in all respects tested, in agreement with theoretical postulations; hence, they confirm once more properties of the circadian system deduced earlier. On the other hand, the results are of practical importance since they state significant correlations between the re-entrainment behavior and rhythm parameters measured before the Zeitgeber shifts; this behavior, therefore, can be predicted from data obtained already before the Zeitgeber has been changed in any way: The duration of re-entrainment is correlated with the amplitude, and the decrement in performance with the phase of the rectal temperature rhythm. These practical implications may also apply to shift work.  相似文献   

9.
The rectal temperature of 8 marmosets was taken regularly throughout a 76 hour period. A pronounced circadian rhythm was detected: body temperature reached a maximum during the light phase and a minimum during the dark phase.  相似文献   

10.
Fifteen healthy female subjects were studied for eight days while living conventionally. Subjects were free to choose the ways they spent their time within a framework of regular times of retiring and rising; in practice, much of the waking time was spent in sedentary activities. Nine of the subjects were aware of the natural light-dark cycle, this approximating to a 12:12 L:D schedule at the time of year when the study took place. Before the study, subjects were assessed for their degree of "morningness" by questionnaire; throughout the study, they wore a rectal probe, and an activity meter on their non-dominant wrist. The timing (phase) and amplitude of the circadian rectal temperature rhythm were assessed on each day by cosinor analysis as well as by a me thod based on visual inspection of the data. These two parameters were also assessed after the temperature data for each day had been "purified" by a number of methods. From these results it was possible to investigate the effect of purification upon the amplitude of the circadian rhythm of temperature. Also, the day-by-day variability of phase, and the relationship between morningness and phase, were compared using these methods of phase estimation, and using cross-correlation between data sets from adjacent days; in all cases, raw and purified temperature data were used. There was a significantly greater amount of daily variation in phase using purified rather than raw data sets, and this difference was present with all methods of purification as well as with all methods for estimating phase. Purifi cation decreased the amplitude of the circadian temperature rhythm by about 30%. Finally, there was a significant correlation between the morningness score of the subjects and the phase of the circadian temperature rhythm, the phase becoming earlier with increasing morningness; when this relationship was re-examined using purified data, it became more marked. These results reflect the masking effects exerted upon raw temperature data by lifestyle. The extent to which the purification methods enable the endogenous component of a circadian rhythm – and, by implication, the output of the endogenous circadian oscillator – to be estimated in subjects living normally is addressed.  相似文献   

11.
Two groups of healthy subjects were studied indoors, first while living normally for 8 days (control section) and then for 18 × 27h “days” (experimental section). This schedule forces the endogenous (body clock-driven) and exogenous (lifestyle-driven) components of circadian rhythms to run independently. Rectal temperature and wrist movement were measured throughout and used as markers of the amplitude of the circadian rhythm, with the rectal temperature also “purified” by means of the activity record to give information about the endogenous oscillator. Results showed that, during the experimental days, there were changes in the amplitude of the overt temperature rhythm and in the relative amounts of out-of-bed and in-bed activity, both of which indicated an interaction between endogenous and exogenous components of the rhythm. However, the amplitude and the amount of overlap were not significantly different on the control days (when endogenous and exogenous components remained synchronized) and those experimental days when endogenous and exogenous components were only transiently synchronized; also, the amplitudes of purified temperature rhythms did not change significantly during the experimental days in spite of changes in the relationship between the endogenous and exogenous components. Neither result offers support for the view that the exogenous rhythm alters the amplitude of oscillation of the endogenous circadian oscillator in humans.  相似文献   

12.
Nine healthy female subjects were studied when exposed to the natural light-dark cycle, but living for 17 “days” on a 27h day (9h sleep, 18h wake). Since the circadian endogenous oscillator cannot entrain to this imposed period, forced desynchronization between the sleep/activity cycle and the endogenous circadian temperature rhythm took place. This enabled the effects of activity on core temperature to be assessed at different endogenous circadian phases and at different stages of the sleep/activity cycle. Rectal temperature was measured at 6-minute intervals, and the activity of the nondominant wrist was summed at 1-minute intervals. Each waking span was divided into overlapping 3h sections, and each section was submitted to linear regression analysis between the rectal temperatures and the total activity in the previous 30 minutes. From this analysis were obtained the gradient (of the change in rectal temperature produced by a unit change in activity) and the intercept (the rectal temperature predicted when activity was zero). The gradients were subjected to a two-factor analysis of variance (ANOVA) (circadian phase/ time awake). There was no significant effect of time awake, but circadian phase was highly significant statistically. Post hoc tests (Newman-Keuls) indicated that gradients around the temperature peak were significantly less than those around its trough. The intercepts formed a sinusoid that, for the group, showed a mesor (±SE) of 36.97 (±0.12) and amplitude (95% confidence interval) of 0.22°C (0.12°C, 0.32°C). We conclude that this is a further method for removing masking effects from circadian temperature rhythm data in order to assess its endogenous component, a method that can be used when subjects are able to live normally. We suggest also that the decreased effect of activity on temperature when the endogenous circadian rhythm and activity are at their peak will reduce the possibility of hyperthermia.  相似文献   

13.
Fifteen healthy female subjects were studied for eight days while living conventionally. Subjects were free to choose the ways they spent their time within a framework of regular times of retiring and rising; in practice, much of the waking time was spent in sedentary activities. Nine of the subjects were aware of the natural light-dark cycle, this approximating to a 12:12 L:D schedule at the time of year when the study took place. Before the study, subjects were assessed for their degree of "morningness" by questionnaire; throughout the study, they wore a rectal probe, and an activity meter on their non-dominant wrist. The timing (phase) and amplitude of the circadian rectal temperature rhythm were assessed on each day by cosinor analysis as well as by a me thod based on visual inspection of the data. These two parameters were also assessed after the temperature data for each day had been "purified" by a number of methods. From these results it was possible to investigate the effect of purification upon the amplitude of the circadian rhythm of temperature. Also, the day-by-day variability of phase, and the relationship between morningness and phase, were compared using these methods of phase estimation, and using cross-correlation between data sets from adjacent days; in all cases, raw and purified temperature data were used. There was a significantly greater amount of daily variation in phase using purified rather than raw data sets, and this difference was present with all methods of purification as well as with all methods for estimating phase. Purifi cation decreased the amplitude of the circadian temperature rhythm by about 30%. Finally, there was a significant correlation between the morningness score of the subjects and the phase of the circadian temperature rhythm, the phase becoming earlier with increasing morningness; when this relationship was re-examined using purified data, it became more marked. These results reflect the masking effects exerted upon raw temperature data by lifestyle. The extent to which the purification methods enable the endogenous component of a circadian rhythm - and, by implication, the output of the endogenous circadian oscillator - to be estimated in subjects living normally is addressed.  相似文献   

14.
Changes in rectal temperature during mild exercise in the middle of the rising (11:00 h) and falling (23:00 h) phases of the circadian rhythm of resting core temperature have been compared. Seven healthy males were studied at rest, while exercising on a cycle ergometer (60 min at 80 W), and during the first 30 min of recovery. Rectal temperature, forearm blood flow, and forearm sweat rate were measured at 1 min intervals throughout. During exercise, there were significant time-of-day differences in the profiles of all three variables, and in the thresholds for increases in forearm blood flow and sweating. Forearm blood flow and sweat rate were recruited more rapidly and to a greater extent with evening exercise, and rectal temperature rose less. Analysis of covariance, with rectal temperature as the covariate, indicated the associations between it and forearm blood flow or sweating were significantly different (p<0.05) between the two times of day. There were also significant (p<0.05) time-of-day effects for forearm blood flow and sweating that were independent of rectal temperature. During recovery, rectal temperature fell more quickly in the late evening than late morning. Forearm blood flow and sweating also showed time-of-day differences, but these did not co-vary with rectal temperature. Control of rectal temperature during exercise and recovery appears to be more effective in the late evening than late morning, and differences in forearm blood flow and sweating, as well as factors independent of these two variables, contribute to this difference. The results support our "heat-gain/heat-loss modes" hypothesis.  相似文献   

15.
Changes in rectal temperature during mild exercise in the middle of the rising (11:00 h) and falling (23:00 h) phases of the circadian rhythm of resting core temperature have been compared. Seven healthy males were studied at rest, while exercising on a cycle ergometer (60 min at 80 W), and during the first 30 min of recovery. Rectal temperature, forearm blood flow, and forearm sweat rate were measured at 1 min intervals throughout. During exercise, there were significant time‐of‐day differences in the profiles of all three variables, and in the thresholds for increases in forearm blood flow and sweating. Forearm blood flow and sweat rate were recruited more rapidly and to a greater extent with evening exercise, and rectal temperature rose less. Analysis of covariance, with rectal temperature as the covariate, indicated the associations between it and forearm blood flow or sweating were significantly different (p<0.05) between the two times of day. There were also significant (p<0.05) time‐of‐day effects for forearm blood flow and sweating that were independent of rectal temperature. During recovery, rectal temperature fell more quickly in the late evening than late morning. Forearm blood flow and sweating also showed time‐of‐day differences, but these did not co‐vary with rectal temperature. Control of rectal temperature during exercise and recovery appears to be more effective in the late evening than late morning, and differences in forearm blood flow and sweating, as well as factors independent of these two variables, contribute to this difference. The results support our “heat‐gain/heat‐loss modes” hypothesis.  相似文献   

16.
Sweat rates and body temperatures of human subjects were measured at 0200, 1000, and 1800 h during a heat exposure of 90 min. The latent period of sweating was not significantly altered in the evening but significantly shortened during the night. Mean body temperature corresponding to the onset of sweating was nearer to the basal body temperature during the night, while during the day the difference between these two temperatures became larger. This phenomenon seems related to the circadian cycle of vasomotor adjustment, since during the night body conductance was higher than during the day and corresponded to a state of a vasodilatation similar to that observed at the onset of sweating. During the day, this situation was reversed. During steady state, the following changes were observed: sweating rate, night less than morning less than evening; skin temperatures, night less than morning less than evening; and rectal temperature increase, morning less than evening less than night. It is hypothesized that these changes are due to either different metabolic rates or an imbalance between heat gains and losses which preserve the circadian rhythm of the body temperature, even under thermal loads.  相似文献   

17.
In adult animals, body temperature shows a 24 h rhythm that is endogenously generated. We examined the existence of 24 h rhythms of temperature in 10 newborn sheep. Four newborns, aged 5 to 28 days were kept with their mothers under nycthemeral conditions, and the remaining 6 lambs, aged 21 to 43 days, were kept with their mothers in constant light from day 3 after birth. Experiments were performed with both groups of lambs in the laboratory. Additional experiments were performed with the 6 lambs kept under constant light while they were in the pen with their mothers to rule out artifacts due to manipulation or artificial feeding. During the experiments done in the laboratory, the lambs were kept blindfolded in a canvas sling and were fed baby formula approximately every four hours (lambs kept under nycthemeral conditions) or every hour (constant light lambs). Lights were on in the room during the whole experiment. Temperature in the room was maintained at 18 +/- 0.1 degrees C (mean +/- SEM). In the experiments done in the pen, animals remained with the mother and room temperature was not controlled. In all experiments, rectal temperature was hourly measured for 24 h with a thermocouple inserted in the lamb's rectum and connected to a Philipp Schenk digital recorder. Lambs kept under nycthemeral conditions show a variation of mean rectal temperature (t degree) with a period of 24 h, that fits a cosine function (P less than 0.001): Rectal t degree (degree C) = 40.6 + 0.4 cos [15 (t-16.22)]. The mesor is 40.6, the amplitude 0.4, and the acrophase expressed in h is 16.22 (n = 4). Lambs kept under constant light show a variation of rectal temperature with a period of 24 h, independently of whether the measurements were done in the laboratory or in the pens. The acrophases varied widely in these animals, when the acrophase were synchronized so theta = 2400, mean rectal temperature showed a variation with a period of 24 h that fits the equation (P less than 0.001): Rectal t degree (degree C) = 39.5 + 0.18 cos [15 (t-0.23)]. The presence of a 24 h rhythm of rectal t degree in lambs kept under nycthemeral conditions, and its persistence in lambs kept under constant light suggests that the rhythm of rectal temperature observed in the newborn lamb is a true circadian rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Effects of phase shifts in circadian rhythms and of melatonin administration on rectal temperature in rats with different activity were studied in the open-field test on 176 Wistar rats kept under conditions of natural or shifted light-darkness period. Under normal light-darkness conditions, the amplitude of diurnal variation in rectal temperature was higher in active rats as compared with passive ones. A shift in the light-darkness conditions inverted the circadian rhythm of rectal temperature and augmented the difference between daytime and night time temperatures in passive and, particularly, in active rats. Melatonin effect depended on dose and time of administration. 1 mg/kg Melatonin enhanced the amplitude of diurnal rhythms of energy metabolism in behaviourally active rats. These changes seem to contribute to adaptive reconstruction in the organism during desynchronosis.  相似文献   

19.
In Channa punctatus, a significant daily variation in hypothalamic S-HT level and monoamine oxidase (MAO) activity was noticed in preparatory phase (February), but not in prespawning (May) or postspawning (November) phases. Hypothalamic dopamine (DA) and noradrenaline (NA), on the other hand, showed marked daily variation in their levels during all the three seasons with peak values in the photophase. The overall activity of MAO (mean ± SEM on 24-hr period) increased from November to May through February, whereas the 5-HT content which was high in November decreased during February and May. The NA and DA levels were low in November and Februry and high in May. The catecholamine (CA) content and MAO activity increased with increasing photoperiod and temperature which is indicative of an enhanced CA metabolism.  相似文献   

20.
To assess the accuracy of infrared methodologies for daily rhythm monitoring of skin temperature, five clinically healthy Italian Saddle gelding horses, and five not pregnant and not lactating Camosciata goats, were monitored every 4 h over a 48 h period. The horses were housed in individual boxes, while the goats in two indoor pens, under natural photoperiod and natural environmental temperature. In each animal, skin temperature was recorded with the use of a digital infrared camera and a non-contact infrared thermometer, in five regions: neck, shoulder, ribs, flank and croup. Recorded values were compared with the well-established daily rhythm of rectal temperature. Rectal temperature was recorded at the same time by means of a digital thermometer. In horses, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to shoulder and flank; a lower value of skin temperature was recorded using thermography for the croup region compared to the shoulder. In goats, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to the flank. In both species, higher values of rectal temperature were observed, compared to the temperature recorded at the skin regions using the other two methodologies. Cosinor rhythmometry showed a daily rhythm of rectal and skin temperature recorded using both methodologies in all the examined regions. General linear model (GLM) showed statistically significant effect of breed on all rhythmic parameters; of day of monitoring on amplitude; of site of recording (rectal vs skin regions) on mesor, amplitude and acrophase; and no effect of methodologies used. The results of this study show the differences in rhythmicity of various body regions temperature and their differences in comparison with daily rhythm rectal temperature. The use of infrared methodologies was inaccurate in assessing body core temperature, but its use could be considered for the evaluation of inflammation in the different body sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号