首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linkage group of five DNA markers on human chromosome 10   总被引:3,自引:0,他引:3  
Five chromosome 10 DNA markers (D10S1, D10S3, D10S4, D10S5, and RBP3) were typed in five large pedigrees with multiple endocrine neoplasia type 2A (MEN-2A) and in five non-MEN-2A pedigrees. Linkage analyses showed that these loci and the locus for MEN-2A (MEN2A) are in one linkage group spanning at least 70 cM. The order of the marker loci is RBP3-D10S5-D10S3-D10S1-D10S4, with interlocus recombination frequencies of 7, 13-19, 19, and 19%, respectively, all on the same side of MEN2A. Analyses of sex-specific recombination frequencies indicated no significant differences between males and females for any of the map intervals studied. Previous localization of D10S5 and RBP3 to the proximal region of the long arm and the pericentric region, respectively, comparison of results with other studies, and our preliminary results with other chromosome 10 markers suggest that the D10S4 end of the map extends into the long arm. Our linkage map has been constructed using only two- and three-locus analyses. It will be possible to combine our results with those of other groups to construct a more detailed and accurate genetic map of chromosome 10.  相似文献   

2.
Medullary thyroid carcinoma (MTC) occurs as a component of three well-described autosomal dominant familial cancer syndromes. Multiple endocrine neoplasia type 2A (MEN 2A) is characterized by MTC, pheochromocytomas, and parathyroid hyperplasia. Patients with the rarer multiple endocrine neoplasia type 2B (MEN 2B) syndrome develop MTC and pheochromocytomas, as well as mucosal neuromas, ganglioneuromatosis of the gastrointestinal tract, and a characteristic "marfanoid" habitus. Finally, MTC is transmitted in an autosomal dominant pattern in some families without associated pheochromocytomas or parathyroid hyperplasia (familial medullary thyroid carcinoma, MTC1(2). Sixty-one members of two well-characterized kindreds segregating MTC1 and 34 [corrected] members of six families segregating MEN2B were genotyped using a panel of RFLP probes from the pericentromeric region of chromosome 10 near a locus for MEN 2A. Statistically significant linkage was observed between the chromosome 10 centromere-specific marker D10Z1 and MTC1 (maximum pairwise lod score 5.88 with 0% recombination) and D10Z1 and MEN2B (maximum pairwise lod score 3.58 with 0% recombination). A maximum multipoint lod score of 4.08 was obtained for MEN2B at the position of D10Z1. In addition, 92 members of a previously unreported large MEN2A kindred were genotyped, and linkage to the pericentromeric region of chromosome 10 is reported (maximum pairwise lod score of 11.33 with 0% recombination between MEN2A and RBP3). These results demonstrate that both a locus for familial MTC and a locus for MEN 2B map to the pericentromeric region of chromosome 10, in the same region as a locus for MEN 2A. The finding that each of these three clinically distinct familial cancer syndromes maps to the same chromosomal region suggests that all are allelic mutations at the same locus or represent a cluster of genes involved in the regulation of neuroendocrine tissue development.  相似文献   

3.
Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer syndrome that is inherited in an apparently autosomal dominant fashion. Previous linkage studies had assigned the MEN2A locus to chromosome 10 in the pericentromeric region. We recently have described several new easily scorable RFLPs for the chromosome 10-specific alpha satellite DNA (the D10Z1) locus that is known, on the basis of previous in situ hybridization experiments, to lie at the centromere. We report here tight linkage between MEN2A and D10Z1, as demonstrated by a maximum lod score of 12.02 at the recombination frequency of zero (1-lod-unit support interval 0-4 cM), indicating that the genetic defect in MEN2A lies in the immediate vicinity of the centromere. By means of a set of ordered polymorphic DNA markers from the pericentromeric region, multipoint as well as pairwise linkage analyses place the MEN2A locus at the middle of a small region (approximately 11 cM) bracketing the centromere with FNRB (at 10p11.2) and RBP3 (at 10q11.2) on either side, providing further support for the centromeric location of the MEN2A locus. Marked sex difference in recombination frequencies exists in this pericentromeric region: significantly (P less than .01) more female than male crossovers were observed across all of the adjacent intervals D10S24-FNRB, FNRB-D10Z1, and D10Z1-RBP3. However, a sex difference was not seen in the 7-cM interval from RBP3 to D10S5, suggesting that large variation in the sex difference in recombination can occur over small chromosomal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We evaluated linkage between the locus for multiple endocrine neoplasia type 1 (MEN1) and several polymorphic DNA markers on chromosome 11 in a single large pedigree. On the basis of the finding of a basic fibroblast growth factor (bFGF)-like substance circulating in plasma of MEN1 patients, we chose a bFGF-related gene known to be localized to 11q13 as one of the markers. This gene locus, INT2, was found to be closely linked to the MEN1 gene. Pairwise and multipoint analyses with INT2 confirm the recent finding by C. Larsson et al. (1988, Nature (London) 332: 85-87) of MEN1 linkage to another marker, skeletal muscle glycogen phosphorylase, at 11q13.  相似文献   

5.
The gene for multiple endocrine neoplasia type 2A (MEN2A) has been mapped to the pericentromeric region of chromosome 10 by linkage analysis. Thirty-four families with multiple cases of medullary carcinoma of the thyroid (MTC), including 24 families with origins in France, have been typed with nine polymorphic markers spanning the centromere of chromosome 10. No recombination was observed between the MEN2A locus and either of the four loci D10Z1 (lod score 12.79), D10S102 (lod score 6.38), D10S94 (lod score 7.76), and D10S34 (lod score 5.94). There was no evidence for genetic linkage heterogeneity in the panel of 34 families. Haplotypes were constructed for a total of 11 polymorphisms in the MEN2A region, for mutation-bearing chromosomes in 24 French families and for 100 spouse controls. One haplotype was present in four MEN2A families but was not observed in any control (P less than .01). Two additional families share a core segment of this haplotype near the MEN2A gene. It is likely that these six families have a common affected ancestor. Because the incidence of pheochromocytoma among carriers varies from 0% to 74% within these six families, it is probable that additional factors modify the expression of the MEN2A gene.  相似文献   

6.
Linkage between seven loci on chromosome 19 and multiple endocrine neoplasia type 2a (MEN2A) was examined in a single large Swedish pedigree. A total of 50 cM was excluded from the male genetic map by pairwise analysis and an estimated 63 cM by multipoint analysis. Using existing data on the likelihood of different marker-marker distances and taking into account current exclusions on other chromosomes, the probability that the gene for MEN2A segregating in this pedigree could still be located on chromosome 19 is approximately 0.28%.  相似文献   

7.
A DNA segment D20S5 isolated from a chromosome 19/20 flow-sorted library was shown to identify two restriction fragment length polymorphisms (RFLPs) with MspI and PvuII. The probe was localized by hybridization in situ to 20p12, the putative site of an interstitial deletion in some MEN 2A and 2B patients. Linkage of the D20S5 and MEN 2A loci was excluded at theta less than or equal to .13 using two large MEN 2A kindreds. These data suggest that the MEN 2A locus may not lie within 20p12 as previously suggested.  相似文献   

8.
A CA dinucleotide repeat polymorphism has been identified for the skeletal muscle alpha-actinin gene ACTN2. The observed heterozygosity is 44% (predicted heterozygosity 50%, PIC 0.47). This polymorphic marker has been localized between D1S74 and D1S103 on the multipoint linkage map of chromosome 1 at a position 44.4 cM from the most distal marker D1S68 at 1 qter.  相似文献   

9.
Genome scans in Icelandic, Australian and New Zealand, and Finnish families have localized putative susceptibility loci for preeclampsia/ eclampsia to chromosome 2. The locus mapped in the Australian and New Zealand study (designated PREG1) was thought to be the same locus as that identified in the Icelandic study. In both these studies, two distinct quantitative trait locus (QTL) regions were evident on chromosome 2. Here, we describe our fine mapping of the PREG1 locus and a genetic analysis of two positional candidate genes. Twenty-five additional microsatellite markers were genotyped within the 74-cM linkage region defined by the combined Icelandic and Australian and New Zealand genome scans. The overall position and shape of the localization evidence obtained using nonparametric multipoint analysis did not change from that seen previously in our 10-cM resolution genome scan; two peaks were displayed, one on chromosome 2p at marker D2S388 (107.46 cM) and the other on chromosome 2q at 151.5 cM at marker D2S2313. Using the robust two-point linkage analysis implemented in the Analyze program, all 25 markers gave positive LOD scores with significant evidence of linkage being seen at marker D2S2313 (151.5 cM), achieving a LOD score of 3.37 under a strict diagnostic model. Suggestive evidence of linkage was seen at marker D2S388 (107.46 cM) with a LOD score of 2.22 under the general diagnostic model. Two candidate genes beneath the peak on chromosome 2p were selected for further analysis using public single nucleotide polymorphisms (SNPs) within these genes. Maximum LOD scores were obtained for an SNP in TACR1 (LOD = 3.5) and for an SNP in TCF7L1 (LOD = 3.33), both achieving genome-wide significance. However, no evidence of association was seen with any of the markers tested. These data strongly support the presence of a susceptibility gene on chromosome 2p11-12 and substantiate the possibility of a second locus on chromosome 2q23.  相似文献   

10.
Gene(s) for the autosomal dominant endocrine cancer syndromes, multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B (MEN2B), and familial medullary thyroid carcinoma (MTC1) all map to the pericentromeric region of chromosome 10. Predictive testing for the inheritance of mutant alleles in individuals at risk for these disorders has been limited by the availability of highly informative and closely linked flanking markers. We describe the development of eight new markers, including two PCR-based dinucleotide repeat polymorphisms and six RFLPs that flank the disease loci. One of the dinucleotide repeat markers (sJRH-1) derives from the RBP3 locus on 10q11.2 and has a PIC of .88. The other dinucleotide repeat (sTCL-1) defines a new locus, D10S176, that maps by in situ hybridization to 10p11.2 and has a PIC of .68. We have constructed a new genetic linkage map of the pericentromeric region of chromosome 10, on the basis of 13 polymorphisms at six loci, which places the MEN2A locus between the dinucleotide repeat markers, with odds of 5,750:1 over the next most likely position. Using this set of markers, predictive genetic testing of 130 at-risk individuals from six families segregating MEN2A revealed that 95% were jointly informative with flanking markers, representing a significant improvement in genetic testing capabilities.  相似文献   

11.
Progressive familial intrahepatic cholestasis (PFIC; OMIM 211600) is the second most common familial cholestatic syndrome presenting in infancy. A locus has previously been mapped to chromosome 18q21-22 in the original Byler pedigree. This chromosomal region also harbors the locus for benign recurrent intrahepatic cholestasis (BRIC) a related phenotype. Linkage analysis in six consanguineous PFIC pedigrees from the Middle East has previously excluded linkage to chromosome 18q21-22, indicating the existence of locus heterogeneity within the PFIC phenotype. By use of homozygosity mapping and a genome scan in these pedigrees, a locus designated "PFIC2" has been mapped to chromosome 2q24. A maximum LOD score of 8.5 was obtained in the interval between marker loci D2S306 and D2S124, with all families linked.  相似文献   

12.
Autism is characterized by impairments in reciprocal communication and social interaction and by repetitive and stereotyped patterns of activities and interests. Evidence for a strong underlying genetic predisposition comes from twin and family studies, although susceptibility genes have not yet been identified. A whole-genome screen for linkage, using 83 sib pairs with autism, has been completed, and 119 markers have been genotyped in 13 candidate regions in a further 69 sib pairs. The addition of new families and markers provides further support for previous reports of linkages on chromosomes 7q and 16p. Two new regions of linkage have also been identified on chromosomes 2q and 17q. The most significant finding was a multipoint maximum LOD score (MLS) of 3.74 at marker D2S2188 on chromosome 2; this MLS increased to 4.80 when only sib pairs fulfilling strict diagnostic criteria were included. The susceptibility region on chromosome 7 was the next most significant, generating a multipoint MLS of 3.20 at marker D7S477. Chromosome 16 generated a multipoint MLS of 2.93 at D16S3102, whereas chromosome 17 generated a multipoint MLS of 2.34 at HTTINT2. With the addition of new families, there was no increased allele sharing at a number of other loci originally showing some evidence of linkage. These results support the continuing collection of multiplex sib-pair families to identify autism-susceptibility genes.  相似文献   

13.
Atopy describes a syndrome of immunoglobulin E (IgE)-mediated allergy that underlies asthma and infantile eczema. We have previously identified a locus on chromosome 13q14 that is linked to atopy and to the total serum immunoglobulin A concentration. We have therefore made a saturation genetic map of the region by typing 59 polymorphic microsatellite loci on chromosome 13q. Multipoint linkage analysis identified a 1-LOD support unit for the location of the atopy locus with a 7.5-cM region flanked by the loci D13S328 and D13S1269. The peak of linkage was at locus D13S161 with a nonparametric -log of P score of approximately 4.5. Parent of origin effects were present, with linkage primarily observed to paternally derived alleles. The genetic map of this region provides a basis for the effective identification of the chromosome 13 atopy gene.  相似文献   

14.
Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locus DYT1 on chromosome 9q32-34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22-25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT gene in probands did not reveal the major deletion 946-948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of theta = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3720 and a common "mutant" haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET.  相似文献   

15.
A region of chromosome 9, surrounding the interferon-beta (IFNB1) locus and the interferon-alpha (IFNA) gene cluster on 9p13-p22, has been shown to be frequently deleted or rearranged in a number of human cancers, including leukemia, glioma, non-small-cell lung carcinoma, and melanoma. To assist in better defining the precise region(s) of 9p implicated in each of these malignancies, a combined genetic and physical map of this region was generated using the available 9p markers IFNB1, IFNA, D9S3, and D9S19, along with a newly described locus, D9S126. The relative order and distances between these loci were determined by multipoint linkage analysis of CEPH (Centre d'Etude du Polymorphisme Humain) pedigree DNAs, pulsed-field gel electrophoresis, and fluorescence in situ hybridization. All three mapping approaches gave concordant results and, in the case of multipoint linkage analysis, the following gene order was supported for these and other closely linked chromosome 9 markers present in the CEPH database: pter-D9S33-IFNB1/IFNA-D9S126-D9S3-D9S19 -D9S9/D9S15-ASSP3-qter. This map serves to extend preexisting chromosome 9 maps (which focus primarily on 9q) and also reassigns D9S3 and D9S19 to more proximal locations on 9p.  相似文献   

16.
Migraine is a common neurological disease with a major genetic component. Recently, it has been proposed that a single locus on chromosome 19p13 contributes to the genetic susceptibility of both rare familial hemiplegic migraine (FHM) and more common types of migraine, migraine with aura and migraine without aura. We analyzed 16 families for co-segregation of migraine with aura and chromosome 19p13 markers. Using multipoint model-free linkage analysis, we obtained a lod score of 4.28 near D19S592. Using an affecteds-only model of linkage, we observed a lod score of 4.79 near D19S592. We were able to provide statistical evidence that this locus on chromosome 19p13 is most likely not the gene CACNA1A, mutations in which cause FHM. These data indicate that chromosome 19p13 contains a locus which contributes to the genetic susceptibility of migraine with aura that is distinct from the FHM locus.  相似文献   

17.
A refined genetic linkage map for the pericentromeric region of human chromosome 10 has been constructed from data on 12 distinct polymorphic DNA loci as well as the locus for multiple endocrine neoplasia type 2A (MEN 2A), a dominantly inherited cancer syndrome. The map extends from D10S24 (at 10p13-p12.2) to D10S3 (at 10q21-q23) and is about 70 cM long. Overall, higher female than male recombination frequencies were observed for this region, with the most remarkable female excess in the immediate vicinity of the centromere, as previously reported. Most of the DNA markers in this map are highly informative for linkage and the majority of the interlocus intervals are no more than 6 cM apart. Thus this map should provide a fine framework for future efforts in more detailed mapping studies around the centromeric area. A set of ordered cross-overs identified in this work is a valuable resource for rapidly and accurately localizing new DNA clones isolated from the pericentromeric region.  相似文献   

18.
We have constructed a high-resolution genetic linkage map in the vicinity of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). The mutation causing this disease, inherited as an autosomal dominant, predisposes carriers to development of neoplastic tumors in the parathyroid, the endocrine pancreas, and the anterior lobe of the pituitary. The 12 markers on the genetic linkage map reported here span nearly 20 cM, and linkage analysis of MEN1 pedigrees has placed the MEN1 locus within the 8-cM region between D11S480 and D11S546. The markers on this map will be useful for prenatal or presymptomatic diagnosis of individuals in families that segregate a mutant allele of the MEN1 gene.  相似文献   

19.
Familial juvenile nephronophthisis (NPH) is an autosomal recessive kidney disease that leads to end-stage renal failure in adolescence and is associated with the formation of cysts at the cortico-medullary junction of the kidneys. NPH is responsible for about 15% of end-stage renal disease in children, as shown by Kleinknecht and Habib. NPH in combination with autosomal recessive retinitis pigmentosa is known as the Senior-Løken syndrome (SLS) and exhibits renal pathology that is identical to NPH. We had excluded 40% of the human genome from linkage with a disease locus for NPH or SLS when antignac et al. first demonstrated linkage for an NPH locus on chromosome 2. We present confirmation of linkage of an NPH locus to microsatellite markers on chromosome 2 in nine families with NPH. By linkage analysis with marker AFM262xb5 at locus D2S176, a maximum lod score of 5.05 at a θmax = .03 was obtained. In a large NPH family that yielded at D2S176 a maximum lod score of 2.66 at θmax = .0, markers AFM172xc3 and AFM016yc5, representing loci D2S135 and D2S110, respectively, were identified as flanking markers, thereby defining the interval for an NPH locus to a region of approximately 15 cM. Furthermore, the cytogenetic assignment of the NPH region was specified to 2p12-(2q13 or adjacent bands) by calculation of linkage between these flanking markers and markers with known unique cytogenetic assignment. The refined map may serve as a genetic framework for additional genetic and physical mapping of the region.  相似文献   

20.
Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder. At least two distinct forms of ADPKD are now well defined. In approximately 86% of affected European families, a gene defect localized to 16p13.3 was responsible for ADPKD, while a second locus has been recently localized to 4q13-q23 as candidate for the disease in the remaining families. We present confirmation of linkage to microsatellite markers on chromosome 4q in eight Spanish families with ADPKD, in which the disease was not linked to 16p13.3. By linkage analysis with marker D4S423, a maximum lod score of 9.03 at a recombination fraction of .00 was obtained. Multipoint linkage analysis, as well as a study of recombinant haplotypes, placed the PKD2 locus between D4S1542 and D4S1563, thereby defining a genetic interval of approximately 1 cM. The refined map will serve as a genetic framework for additional genetic and physical mapping of the region and will improve the accuracy of presymptomatic diagnosis of PKD2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号