首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Marine subsurface eukaryotes: the fungal majority   总被引:1,自引:0,他引:1  
Studies on the microbial communities of deep subsurface sediments have indicated the presence of Bacteria and Archaea throughout the sediment column. Microbial eukaryotes could also be present in deep-sea subsurface sediments; either bacterivorous protists or eukaryotes capable of assimilating buried organic carbon. DNA- and RNA-based clone library analyses are used here to examine the microbial eukaryotic diversity and identify the potentially active members in deep-sea sediment cores of the Peru Margin and the Peru Trench. We compared surface communities with those much deeper in the same cores, and compared cores from different sites. Fungal sequences were most often recovered from both DNA- and RNA-based clone libraries, with variable overall abundances of different sequence types and different dominant clone types in the RNA-based and the DNA-based libraries. Surficial sediment communities were different from each other and from the deep subsurface samples. Some fungal sequences represented potentially novel organisms as well as ones with a cosmopolitan distribution in terrestrial, fresh and salt water environments. Our results indicate that fungi are the most consistently detected eukaryotes in the marine sedimentary subsurface; further, some species may be specifically adapted to the deep subsurface and may play important roles in the utilization and recycling of nutrients.  相似文献   

2.
Community structure and function in prokaryotic marine plankton   总被引:3,自引:0,他引:3  
Molecular biodiversity studies of microbial communities have provided invaluable information on the existence of heretofore unknown organisms and on community composition. Cloning and ‘fingerprinting’ techniques have been used many times to study prokaryote community composition of marine plankton. There are still many opportunities for new discoveries in this area, but the results have also opened new questions about the activities of these organisms and their function, going beyond just listing taxa or counting organisms. Rarely can the broad function be inferred from phylogenetic position alone (e.g. cyanobacteria). The recent discovery of abundant non-cyanobacterial marine phototrophs points to our inability to link phylogenetic position with function in a detailed way. One approach we have found fruitful is to combine fluorescence in situ hybridization with microautoradiography, a technique dubbed STARFISH. A recent application has shown that ubiquitous archaea from the deep sea, phylogenetically related to extreme thermophiles, are active in the uptake of amino acids from ambient (nanomolar) concentrations. This suggests the group is at least partly heterotrophic and able to compete successfully with bacteria for nutrients. Other as-yet uncultivated groups are also amenable to similar studies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.  相似文献   

4.
5.
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.  相似文献   

6.
Microbes have central roles in ocean food webs and global biogeochemical processes, yet specific ecological relationships among these taxa are largely unknown. This is in part due to the dilute, microscopic nature of the planktonic microbial community, which prevents direct observation of their interactions. Here, we use a holistic (that is, microbial system-wide) approach to investigate time-dependent variations among taxa from all three domains of life in a marine microbial community. We investigated the community composition of bacteria, archaea and protists through cultivation-independent methods, along with total bacterial and viral abundance, and physico-chemical observations. Samples and observations were collected monthly over 3 years at a well-described ocean time-series site of southern California. To find associations among these organisms, we calculated time-dependent rank correlations (that is, local similarity correlations) among relative abundances of bacteria, archaea, protists, total abundance of bacteria and viruses and physico-chemical parameters. We used a network generated from these statistical correlations to visualize and identify time-dependent associations among ecologically important taxa, for example, the SAR11 cluster, stramenopiles, alveolates, cyanobacteria and ammonia-oxidizing archaea. Negative correlations, perhaps suggesting competition or predation, were also common. The analysis revealed a progression of microbial communities through time, and also a group of unknown eukaryotes that were highly correlated with dinoflagellates, indicating possible symbioses or parasitism. Possible ‘keystone'' species were evident. The network has statistical features similar to previously described ecological networks, and in network parlance has non-random, small world properties (that is, highly interconnected nodes). This approach provides new insights into the natural history of microbes.  相似文献   

7.
Stromatolites have been present on Earth, at various levels of distribution and diversity, for more than 3 billion years. Today, the best examples of stromatolites forming in hypersaline marine environments are in Hamelin Pool at Shark Bay, Western Australia. Despite their evolutionary significance, little is known about their associated microbial communities. Using a polyphasic approach of culture-dependent and culture-independent methods, we report the discovery of a wide range of microorganisms associated with these biosedimentary structures. There are no comparable reports combining these methodologies in the survey of cyanobacteria, bacteria, and archaea in marine stromatolites. The community was characterized by organisms of the cyanobacterial genera Synechococcus, Xenococcus, Microcoleus, Leptolyngbya, Plectonema, Symploca, Cyanothece, Pleurocapsa and Nostoc. We also report the discovery of potentially free-living Prochloron. The other eubacterial isolates and clones clustered into seven phylogenetic groups: OP9, OP10, Marine A group, Proteobacteria, Low G+C Gram-positive, Planctomycetes and Acidobacteria. We also demonstrate the presence of sequences corresponding to members of halophilic archaea of the divisions Euryarchaeota and Crenarchaeota and methanogenic archaea of the order Methanosarcinales. This is the first report of such archaeal diversity from this environment. This study provides a better understanding of the microbial community associated with these living rocks.  相似文献   

8.
Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454‐pyrosequencing to analyse the soil microbial community composition in a long‐term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se.  相似文献   

9.
The microbial communities of freshwater hot spring mats from Boekleung (Western Thailand) were studied. Temperatures ranged from over 50 up to 57°C. Green-, red-, and yellow colored mat layers were analyzed. In order to detect the major components of the microbial communities constituting the mat as well as the microorganisms showing significant metabolic activity, samples were analyzed using DNA- and RNA-based molecular techniques, respectively. Microbial community fingerprints, performed by denaturing gradient gel electrophoresis (DGGE), revealed clear differences among mat layers. Thermophilic phototrophic microorganisms, Cyanobacteria and Chloroflexi, constituted the major groups in these communities (on average 65 and 51% from DNA and RNA analyses, respectively). Other bacteria detected in the mat were Bacteroidetes, members of the Candidate Division OP10, Actinobacteria, and Planctomycetes. Differently colored mat layers showed characteristic bacterial communities and the major components of the metabolically active fraction of these communities have been identified.  相似文献   

10.
Sediment-hosting hydrothermal systems in the Okinawa Trough maintain a large amount of liquid, supercritical and hydrate phases of CO2 in the seabed. The emission of CO2 may critically impact the geochemical, geophysical and ecological characteristics of the deep-sea sedimentary environment. So far it remains unclear whether microbial communities that have been detected in such high-CO2 and low-pH habitats are metabolically active, and if so, what the biogeochemical and ecological consequences for the environment are. In this study, RNA-based molecular approaches and radioactive tracer-based respiration rate assays were combined to study the density, diversity and metabolic activity of microbial communities in CO2-seep sediment at the Yonaguni Knoll IV hydrothermal field of the southern Okinawa Trough. In general, the number of microbes decreased sharply with increasing sediment depth and CO2 concentration. Phylogenetic analyses of community structure using reverse-transcribed 16S ribosomal RNA showed that the active microbial community became less diverse with increasing sediment depth and CO2 concentration, indicating that microbial activity and community structure are sensitive to CO2 venting. Analyses of RNA-based pyrosequences and catalyzed reporter deposition-fluorescence in situ hybridization data revealed that members of the SEEP-SRB2 group within the Deltaproteobacteria and anaerobic methanotrophic archaea (ANME-2a and -2c) were confined to the top seafloor, and active archaea were not detected in deeper sediments (13–30 cm in depth) characterized by high CO2. Measurement of the potential sulfate reduction rate at pH conditions of 3–9 with and without methane in the headspace indicated that acidophilic sulfate reduction possibly occurs in the presence of methane, even at very low pH of 3. These results suggest that some members of the anaerobic methanotrophs and sulfate reducers can adapt to the CO2-seep sedimentary environment; however, CO2 and pH in the deep-sea sediment were found to severely impact the activity and structure of the microbial community.  相似文献   

11.
Under laboratory conditions, the microbial communities of bottom sediments of a mud volcano Peschanka (Lake Baikal) were found to carry out anaerobic methane oxidation (AOM). After 16 days of anaerobic cultivation of the enrichment cultures, methane content in the gas phase decreased, and microbial consortia were established. The content of carbon, nitrogen, and oxygen determined by energy dispersive X-ray spectroscopy (EDS) was higher than in the nearby sediment particles. The presence of bacteria of the NC10 phylum and archaea of the ANME-2d cluster was established by fluorescent in situ hybridization (FISH).  相似文献   

12.
Microbial communities in Calyptogena sediment and microbial mats of Sagami Bay, Japan, were characterized using 16S rRNA gene sequencing and lipid biomarker analysis. Characterization of 16S rRNA gene isolated from these samples suggested a predominance of bacterial phylotypes related to Gammaproteobacteria (57-64%) and Deltaproteobacteria (27-29%). The Epsilonproteobacteria commonly found in cold seeps and hydrothermal vents were only detected in the microbial mat sample. Significantly different archaeal phylotypes were found in Calyptogena sediment and microbial mats; the former contained only Crenarchaeota clones (100% of the total archaeal clones) and the latter exclusively Euryarchaeota clones, including the anaerobic oxidation of methane archaeal groups ANME-2a and ANME-2c. Many of these lineages are as yet uncultured and undescribed groups of bacteria and archaea. Phospholipid fatty acid analysis suggested the presence of sulphate-reducing and sulphur-oxidizing bacteria. Results of intact glyceryl dialkyl glyceryl tetraether lipid analysis indicated the presence of nonthermophilic marine planktonic archaea. These results suggest that the microbial community in the Sagami Bay seep site is distinct from previously characterized cold-seep environments.  相似文献   

13.
In aquatic environments heterotrophic flagellates are an important component within the microbial loop and the food web, owing to their involvement in the energy transfer and flux and as an intermediate link between bacteria and primary producers, and greater organisms, such as other protists and metazoan consumers. In the microbial loop heterotrophic flagellates highly contribute to fast biomass and nutrient recycling and to the production in aquatic environments. In fact, these protists consume efficiently viruses, bacteria, cyanobacteria and picophytoplankton, and are grazed mainly by other protists, rotifers and small crustaceans. In this paper the knowledge about these unicellular organisms is reviewed, taking into particular account their ecological relationships and trophic role within the plankton community of marine and freshwater environments.  相似文献   

14.
Marine planktonic bacteria and archaea commonly exhibit pronounced seasonal succession in community composition. But the existence of seasonality in their assembly processes and between‐domain differences in underlying mechanism are largely unassessed. Using a high‐coverage sampling strategy (including single sample for each station during four cruises in different seasons), 16S rRNA gene sequencing, and null models, we investigated seasonal patterns in the processes governing spatial turnover of bacteria and archaea in surface coastal waters across a sampling grid over ~300 km in the East China Sea. We found that archaea only bloomed in prokaryotic communities during autumn and winter cruises. Seasonality mostly overwhelmed spatial variability in the compositions of both domains. Bacterial and archaeal communities were dominantly governed by deterministic and stochastic assembly processes, respectively, in autumn cruise, probably due to the differences in niche breadths (bacteria < archaea) and relative abundance (bacteria > archaea). Stochasticity dominated assembly mechanisms of both domains but was driven by distinct processes in winter cruise. Determinism‐dominated assembly mechanisms of bacteria rebounded in spring and summer cruises, reflecting seasonal variability in bacterial community assembly. This could be attributed to seasonal changes in bacterial niche breadths and habitat heterogeneity across the study area. There were seasonal changes in environmental factors mediating the determinism‐stochasticity balance of bacterial community assembly, holding a probability of the existence of unmeasured mediators. Our results suggest contrasting assembly mechanisms of bacteria and archaea in terms of determinism‐vs.‐stochasticity pattern and its seasonality, highlighting the importance of seasonal perspective on microbial community assembly in marine ecosystems.  相似文献   

15.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

16.
Recent studies have highlighted the surprising richness of soil bacterial communities; however, bacteria are not the only microorganisms found in soil. To our knowledge, no study has compared the diversities of the four major microbial taxa, i.e., bacteria, archaea, fungi, and viruses, from an individual soil sample. We used metagenomic and small-subunit RNA-based sequence analysis techniques to compare the estimated richness and evenness of these groups in prairie, desert, and rainforest soils. By grouping sequences at the 97% sequence similarity level (an operational taxonomic unit [OTU]), we found that the archaeal and fungal communities were consistently less even than the bacterial communities. Although total richness levels are difficult to estimate with a high degree of certainty, the estimated number of unique archaeal or fungal OTUs appears to rival or exceed the number of unique bacterial OTUs in each of the collected soils. In this first study to comprehensively survey viral communities using a metagenomic approach, we found that soil viruses are taxonomically diverse and distinct from the communities of viruses found in other environments that have been surveyed using a similar approach. Within each of the four microbial groups, we observed minimal taxonomic overlap between sites, suggesting that soil archaea, bacteria, fungi, and viruses are globally as well as locally diverse.  相似文献   

17.
Microbial genome sequencing has entered a new phase, where DNA sequence information is gathered from entire microbial communities (metagenomics or environmental genomics) rather than from individual microorganisms. By providing access to the genetic material of vast numbers of organisms, most of which are organisms that have never been isolated or cultivated, a new level of insight is being gained into the diversity and extent of the microbial processes that are presently occuring in environmental communities. By extending metagenomic-based approaches to the study of very complex and methodologically recalcitrant soil environments, a recent study has found that ammonia-oxidizing archaea are more abundant in many soils than bacteria.1 These findings not only highlight the undoubtedly critical yet unknown roles that archaea play in global nutrient cycles but illustrate the importance of genomic studies for informing us about the functional capacity of life on Earth.  相似文献   

18.
Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro‐organisms, but similar links for marine micro‐organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity–productivity relationship was independent of community diversity calculated as the Shannon index. From our long‐term (7‐year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning.  相似文献   

19.
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events.  相似文献   

20.
In this report, real-time quantitative PCR (TaqMan qPCR) of the small subunit (SSU) 16S-like rRNA molecule, a universal phylogenetic marker, was used to quantify the relative abundance of individual bacterial members of a diverse, yet mostly unculturable, microbial community from a marine sponge. Molecular phylogenetic analyses of bacterial communities derived from Caribbean Lithistid sponges have shown a wide diversity of microbes that included at least six major subdivisions; however, very little overlap was observed between the culturable and unculturable microbial communities. Based on sequence data of three culture-independent Lithistid-derived representative bacteria, we designed probe/primer sets for TaqMan qPCR to quantitatively characterize selected microbial residents in a Lithistid sponge, Vetulina, metagenome. TaqMan assays included specificity testing, DNA limit of detection analysis, and quantification of specific microbial rRNA sequences such as Nitrospira-like microbes and Actinobacteria up to 172 million copies per microgram per Lithistid sponge metagenome. By contrast, qPCR amplification with probes designed for common previously cultured sponge-associated bacteria in the genera Rheinheimera and Marinomonas and a representative of the CFB group resulted in only minimal detection of the Rheiheimera in total DNA extracted from the sponge. These data verify that a large portion of the microbial community within Lithistid sponges may consist of currently unculturable microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号