首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Considering the potentiality of honey in combating diseases, the present study was carried out aiming to assess the in vitro antiprotozoal activity of several honeys (Ziziphus spina-christi, Acacia nilotica, Acacia seyal, and Cucurbita maxima) against Entamoeba histolytica and Giardia lamblia by employing the sub-culture method. All the tested honeys inhibited the growth of trophozoites, and the level of inhibition varied according to the assayed concentrations and incubation times. Acacia seyal honey had completely stopped motility of E. histolytica trophozoites at a concentration  50 µg/ml after incubation for 72 h. Ziziphus spina-christi, Acacia seyal, and Acacia nilotica honeys had completely inhibited the growth of Giardia lamblia trophozoites at concentration  200 µg/ml after 72 h. These inhibitory activities were similar to that of Metronidazole? which showed IC50 = 0.27. The mammalian cytotoxicity of these honeys against normal Vero cell line which determined by applying MTT method verified the nontoxicity of the examined honeys. Also the proximate composition of the samples indicated compliance with the natural honey standards. The findings of the study indicate the need for in vivo studies and further investigations to identify active principles with antiprotozoal activities from natural honeys.  相似文献   

2.
The synthesis of novel 3-tetrazolylmethyl-4H-chromen-4-ones via an Ugi-azide multicomponent reaction and their biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomona vaginalis are described. Reported yields are moderate to good and biological results show that these compounds could be considered as candidates to anti-parasitic drugs, especially against G. lamblia.  相似文献   

3.
4.
Entamoeba histolytica and Spironucleus barkhanus have genes that encode short iron-dependent hydrogenases (Fe-hydrogenases), even though these protists lack hydrogenosomes. To understand better the biochemistry of the protist Fe-hydrogenases, we prepared a recombinant E. histolytica short Fe-hydrogenase and measured its activity in vitro. A Giardia lamblia gene encoding a short Fe-hydrogenase was identified from shotgun genomic sequences, and RT-PCR showed that cultured entamoebas and giardias transcribe short Fe-hydrogenase mRNAs. A second E. histolytica gene, which encoded a long Fe-hydrogenase, was identified from shotgun genomic sequences. Phylogenetic analyses suggested that the short Fe-hydrogenase genes of entamoeba and diplomonads share a common ancestor, while the long Fe-hydrogenase gene of entamoeba appears to have been laterally transferred from a bacterium. These results are discussed in the context of competing ideas for the origins of genes encoding fermentation enzymes of these protists.  相似文献   

5.
6.
We have isolated from a Kentucky stream a bacterial strain capable of killing the cyst form of Giardia lamblia. This bacterium, designated Sun4, is a Gram-negative, aerobic rod which produces a yellow pigment, but not of the flexirubin-type. Although true gliding motility has not been observed in Sun4, this strain does exhibit a spreading colony morphology when grown on R2A agar. Strain Sun4 has been identified by 16S rRNA sequencing and phylogenetic analysis as belonging to the genus Flavobacterium, and is most closely related to Cytophaga sp. strain Type 0092 and associated Flavobacterium columnare strains. Lipid analysis also identified fatty acids characteristic of the Cytophaga–Flavobacterium group of bacteria. In culture, Sun4 is able to degrade casein and cellulose, but not chitin, gelatin, starch, or agar. Degradation of Giardia cysts by Sun4 appears to require direct cellular contact as neither cell-free extracts nor cells separated from the cysts by dialysis membranes showed any activity against cysts. Activity against Giardia cysts is rapid, with Sun4 killing over 90% of cysts within 48 h. Strain Sun4 requires elevated levels of Ca2+ for optimal growth and degradative activity against Giardia cysts. We propose that bacterial strains such as Sun4 could be used as biological control agents against Giardia cysts in drinking water treatment systems.  相似文献   

7.
8.
In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.  相似文献   

9.
Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.  相似文献   

10.
The genome of Entamoeba histolytica is considered to possess very few intervening sequences (introns), as only 5 intron-containing genes from this protozoan parasite have been reported so far. However, while sequencing a number of genomic contigs as well as three independent genes coding for ribosomal protein L27a, we have identified 9 additional intron-containing genes of E. histolytica and the closely related species Entamoeba dispar, indicating that introns are more common in these organisms than previously suggested. The various amoeba introns are relatively short comprising between 46 and 115 nucleotides only and have a higher AT-content compared to the corresponding exon sequences. In contrast to higher eukaryotes, amoeba introns do not contain a well-conserved branch point consensus, and have extended donor and acceptor splice sites of the sequences G  相似文献   

11.
ABSTRACT. Pancreatic digests of casein are major ingredients of media used in the axenic cultivation of lumen-dwelling parasitic protozoa, especially Entamoeba, Giardia , and trichomonads. The digest used almost exclusively in the development of these media, Medo-Peptone (Trypticase® BBL), has not been available since 1981. Moreover, none of dozens of similar type digests tested since then in our laboratory has proved equal to Medo-Peptone, and in the last two years it has become increasingly difficult to obtain new batches which will support even modest growth of Entamoeba histolytica . In response to this problem we have developed a casein-free medium, YI-S, consisting of a nutrient broth, vitamin mixture and serum. We recommend it as a replacement for the casein-dependent medium TYI-S-33, currently the most widely used for axenic culture of Entamoeba histolytica and other lumen-dwellers.  相似文献   

12.
O-Linked N-acetylglucosaminyltransferase (OGT) catalyzes the transfer of a single GlcNAc to the Ser or Thr of nucleocytoplasmic proteins. OGT activity, which may compete with that of kinases, is involved in signaling in animals and plants, and abnormalities in OGT activities have been associated with type 2 diabetes. Here, we show that ogt genes that predict enzymes with characteristic tetratricopeptide repeats and a spindly domain are present in some protists (Giardia, Cryptosporidium, Toxoplasma, and Dictyostelium) but are absent from the majority of protists examined (e.g., Plasmodium, Trypanosoma, Entamoeba, and Trichomonas). Similarly, ogt genes are present in some fungi but are absent from numerous other fungi, suggesting that secondary loss is an important contributor to the evolution of ogt genes. Nucleocytosolic extracts of Giardia and Cryptosporidium show OGT activity, and recombinant Giardia and Cryptosporidium OGTs are active in yeast and bacteria, respectively. These results suggest the possibility that O-GlcNAc modification of nucleocytosolic proteins also has function(s) in simple eukaryotes.  相似文献   

13.
Antigenic variation in Giardia lamblia   总被引:8,自引:0,他引:8  
Clones of the WB isolate of Giardia lamblia were exposed to cytotoxic mAb 6E7 which reacts with a 170-kDa surface Ag. Surviving progeny occurred at a frequency of about 1 in 1000 and were resistant to the effects of mAb 6E7. Analysis of progeny and clones of these progeny by surface radiolabeling, surface immunofluorescence, and Western blotting failed to detect the 170-kDa Ag. Loss of this Ag was associated with the appearance of a series of new surface Ag. A cytotoxic mAb (5C1) was produced to one of the newly appearing antigens (approximately equal to 64 kDa) and Giardia resistant to the cytotoxic effects of 5C1 isolated. Neither the approximately equal to 64 kDa nor the 170 kDa Ag were present and were replaced by a second series of new Ag. These studies clearly establish the loss and subsequent replacement of two antigenically distinct epitopes on Giardia derived from a single organism.  相似文献   

14.
ABSTRACT A codon usage table for the intestinal parasite Giardia lamblia was generated by analysis of the nucleotide sequences of eight genes comprising 3,135 codons. Codon usage revealed a biased use of synonomous codons with a preference for NNC codons (42.1%). The codon usage of G. lamblia more closely resembles that of the prokaryote Halobacterium halobium (correlation coefficient r = 0.73) rather than that of other eukaryotic protozoans, i.e. Trypanosoma brucei ( r = 0.434) and Plasmodium falciparum ( r =–0.31). These observations are consistent with the view that G. lamblia represents the first line of descent from the ancestral cells that first took on eukaryotic features.  相似文献   

15.
Recent studies have shown that the genome of Giardia lamblia is plastic. Clinical isolates exhibit extensive karyotypic heterogeneity and chromosome rearrangements occur frequently, in vitro. In this review, Sylvie Le Blancq looks at genome organization and the impact of DNA rearrangement events.  相似文献   

16.
Antigenic variation in Giardia lamblia   总被引:4,自引:0,他引:4  
Giardia lamblia undergo surface antigenic variation in vitro and in vivo. The presence of variant trophozoites can be detected in clones after exposure to cytotoxic monoclonal antibodies. Surviving Giardia (progeny) no longer possess the initial major surface antigen which is replaced by new antigens. Exposure of a clone from one progeny to another cytotoxic mAb specific to one newly appearing surface antigen resulted in the loss of this antigen and replacement by another set of antigens. The frequency of change was rapid (1:100-1:1000) and was dependent upon the isolate. The presence of variant populations in clones was confirmed by direct and indirect immunofluorescence using mAbs to major surface antigens of subsequent progeny. The putative amino acid sequence of a portion of one antigen revealed a cysteine-rich composition which was confirmed in this variant protein as well as others by preferential uptake of [35S]cysteine. The mechanism(s) responsible most likely involves genomic rearrangements since Southern blots revealed a family of related genes which changed frequently compared to other areas of the genome. However, expression-linked copies have not been detected. Loss and gain of surface antigens have also been found in gerbils and humans infected with defined clones, but there does not appear to be cyclical appearance of variant populations. The biological importance of antigenic variation is not known but it may contribute to chronic and/or repeated infections.  相似文献   

17.
Bacteria have survived, and many have thrived, since antiquity in the presence of the highly‐reactive chalcogen—oxygen (O2). They are known to evoke intricate strategies to defend themselves from the reactive by‐products of oxygen—reactive oxygen species (ROS). Many of these detoxifying mechanisms have been extensively characterized; superoxide dismutase, catalases, alkyl hydroperoxide reductase and the glutathione (GSH)‐cycling system are responsible for neutralizing specific ROS. Meanwhile, a pool of NADPH—the reductive engine of many ROS‐combating enzymes—is maintained by metabolic enzymes including, but not exclusively, glucose‐6 phosphate dehydrogenase (G6PDH) and NADP‐dependent isocitrate dehydrogenase (ICDH‐NADP). So, it is not surprising that evidence continues to emerge demonstrating the pivotal role metabolism plays in mitigating ROS toxicity. Stemming from its ability to concurrently decrease the production of the pro‐oxidative metabolite, NADH, while augmenting the antioxidative metabolite, NADPH, metabolism is the fulcrum of cellular redox potential. In this review, we will discuss the mounting evidence positioning metabolism and metabolic shifts observed during oxidative stress, as critical strategies microbes utilize to thrive in environments that are rife with ROS. The contribution of ketoacids—moieties capable of non‐enzymatic decarboxylation in the presence of oxidants—as ROS scavengers will be elaborated alongside the metabolic pathways responsible for their homeostases. Further, the signalling role of the carboxylic acids generated following the ketoacid‐mediated detoxification of the ROS will be commented on within the context of oxidative stress.  相似文献   

18.
The physiological role of a bifunctional enzyme, 3,4-dihydrocoumarin hydrolase (DCH), which is capable of both hydrolysis of ester bonds and organic acid-assisted bromination of organic compounds, was investigated. Purified DCH from Acinetobacter calcoaceticus F46 catalysed dose- and time-dependent degradation of peracetic acid. The gene (dch) was cloned from the chromosomal DNA of the bacterium. The dch ORF was 831 bp long, corresponding to a protein of 272 amino acid residues, and the deduced amino acid sequence showed high similarity to those of bacterial serine esterases and perhydrolases. The dch gene was disrupted by homologous recombination on the A. calcoaceticus genome. The dch disruptant strain was more sensitive to growth inhibition by peracetic acid than the parent strain. On the other hand, the recombinant Escherichia coli cells expressing dch were more resistant to peracetic acid. A putative catalase gene was found immediately downstream of dch, and Northern blot hybridization analysis revealed that they are transcribed as part of a polycistronic mRNA. These results suggested that in vivo DCH detoxifies peroxoacids in conjunction with the catalase, i.e. peroxoacids are first hydrolysed to the corresponding acids and hydrogen peroxide by DCH, and then the resulting hydrogen peroxide is degraded by the catalase.  相似文献   

19.
Parasitic infections caused by Entamoeba histolytica are still major threats against public health, especially in developing countries. Although current therapies exist, the problems associated with parasite resistance and negative side effects make it imperative to search for new therapeutic agents. A systematic scaffold analysis reported herein of a public database containing 474 antiamoebic compounds reveals that benzimidazole is the most active scaffold reported thus far. To gain insights into the antiamoebic activity of novel compounds, the authors report herein the biological activity of 12 compounds, including benzotriazole and indazole derivatives, scaffolds not previously tested against E. histolytica. Compounds with the benzotriazole and indazole scaffolds showed low micromolar activity (IC(50) = 0.304 and 0.339 μM) and are more active than metronidazole, which is the drug of choice used for the treatment of amebiosis. The novel compounds have similar properties to approved drugs. Compounds with novel scaffolds represent promising starting points of an optimization program against E. histolytica.  相似文献   

20.
Seib KL  Jennings MP  McEwan AG 《FEBS letters》2003,546(2-3):411-415
Sco proteins are found in mitochondria and in a variety of oxidase positive bacteria. Although Sco is required for the formation of the Cu(A) centre in a cytochrome oxidase of the aa(3) type, it was observed that oxidases with a Cu(A) centre are not present in many bacteria that contain a Sco homologue. Two bacteria of this type are the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. The sco genes of N. gonorrhoeae strain 1291 and N. meningitidis strain MC58 were cloned, inactivated by inserting a kanamycin resistance cassette and used to make knockout mutants by allelic exchange. Both N. gonorrhoeae and N. meningitidis sco mutants were highly sensitive to oxidative killing by paraquat, indicating that Sco is involved in protection against oxidative stress in these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号