首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protozoan intestinal parasite Entamoeba histolytica remains a significant cause of morbidity and mortality worldwide. E. histolytica causes two major clinical syndromes, amebic colitis and amebic liver abscess. Recent advances in the development of in vitro and in vivo models of disease, new genetic approaches, the identification of key E. histolytica virulence factors, and the recognition of crucial elements of the host response to infection have led to significant insights into the pathogenesis of amebic infection. E. histolytica virulence factors include 1) a surface galactose binding lectin that mediates E. histolytica binding to host cells and may contribute to amebic resistance to complement, 2) amebapores, small peptides capable of lysing cells, which may play a role in killing intestinal epithelial cells, hepatocytes, and host defense cells, and 3) a family of secreted cysteine proteinases that play a key role in E. histolytica tissue invasion, evasion of host defenses, and parasite induction of gut inflammation. Amebae can both lyse host cells and induce their suicide through programmed cell death. The host response is also an important factor in the outcome of infection, and neutrophils may play a key role in contributing to the tissue damage seen in amebiasis and in controlling amebic infection.  相似文献   

2.
Entamoeba histolytica: specific antigen recognized by a monoclonal antibody   总被引:2,自引:0,他引:2  
Specific antigenic determinants on the membrane surface of Entamoeba histolytica that distinguish it from other Entamoeba species were demonstrated. Evidence for these antigenic determinants was obtained with a monoclonal antibody to E. histolytica which showed not only specificity but also sensitivity as demonstrated in enzyme linked immunosorbent assay. Immunofluorescence microscopy showed that the monoclonal antibody recognized an epitope present on the membrane surface of E. histolytica trophozoites. The epitope detected by the monoclonal antibody was present in three components of different molecular weight. These components may have a common precursor or may be the result of enzymatic degradation under the conditions tested.  相似文献   

3.
The glycosylphosphatidylinositol (GPI) moiety is one of the ways by which many cell surface proteins, such as Gal/GalNAc lectin and proteophosphoglycans (PPGs) attach to the surface of Entamoeba histolytica, the agent of human amoebiasis. It is believed that these GPI-anchored molecules are involved in parasite adhesion to cells, mucus and the extracellular matrix. We identified an E. histolytica homolog of PIG-M, which is a mannosyltransferase required for synthesis of GPI. The sequence and structural analysis led to the conclusion that EhPIG-M1 is composed of one signal peptide and 11 transmembrane domains with two large intra luminal loops, one of which contains the DXD motif, involved in the enzymatic catalysis and conserved in most glycosyltransferases. Expressing a fragment of the EhPIG-M1 encoding gene in antisense orientation generated parasite lines diminished in EhPIG-M1 levels; these lines displayed reduced GPI production, were highly sensitive to complement and were dramatically inhibited for amoebic abscess formation. The data suggest a role for GPI surface anchored molecules in the survival of E. histolytica during pathogenesis.  相似文献   

4.
Actin cytoskeleton disruption in host cells has been demonstrated for PTPases from pathogenic microorganisms. In this work, we analysed whether the secreted acid phosphatase from Entamoeba histolytica has phosphotyrosine phosphatase activity and the possibility that this activity may participate in damaging host cells. The secreted acid phosphatase of E. histolytica, which catalyses p-nitrophenyl phosphate hydrolysis at acid pH values, was found to have phosphotyrosine phosphatase activity. The enzymatic properties of phosphotyrosine phosphatase and acid phosphatase were virtually identical and included: Km values of 10 x 10(-4) M, no requirement for divalent cations, and sensitivity to molybdate, vanadate, and tungstate. The phosphotyrosyl phosphatase activity caused significant levels of cell rounding and detachment correlating with disruption of the actin stress fibres in HeLa cells. Thus, our data suggest that secreted phosphotyrosine phosphatase could play a cytotoxic role during amoebic infection.  相似文献   

5.
The extracellular cysteine proteinases of Entamoeba histolytica have been implicated as important virulence factors in the pathogenesis of amebiasis and play a key role in tissue invasion and disruption of host defenses. These proteinases have attracted considerable interest as targets for novel therapeutic agents and as vaccine candidates. Here, Xuchu Que and Sharon Reed highlight some of the more recent findings, focusing in particular on functional and structural features of the extracellular cysteine proteinases of E. histolytica.  相似文献   

6.
7.
Site-directed mutagenesis study was performed to elucidate the role of conserved tryptophan-101 present at the active site of phosphoserine aminotransferase from an enteric human parasite Entamoeba histolytica. Fluorescence resonance energy transfer and molecular dynamic simulation show that the indole ring of Trp101 stacks with the cofactor PLP. Loss of enzymatic activity and PLP polarization values suggest that Trp101 plays a major role in maintaining a defined PLP microenvironment essentially required for optimal enzymatic activity. Studies on W101F, W101H and W101A mutants show that only the indole ring of the conserved Trp101 forms most favorable stacking interaction with the pyridine ring of the cofactor PLP. Protein stability was compromised on substitution of Trp101 with Phe/His/Ala amino acids. A difference in conformational free energy of 1.65?kcal?mol(-1) was observed between WT-protein and W101A mutant.  相似文献   

8.
Serine proteases are one of the biologically most important and widely distributed enzyme families. A protease capable of degrading the substrate Suc-AAF-AMC was isolated from axenically grown trophozoites of Entamoeba histolytica. The enzyme was purified by ion-exchange chromatography and electroelution, and appeared on 2D-PAGE as a spot of 60 kDa and pI of 4.65. Data obtained from zymogram suggest the active protease is present either as homodimer (130 kDa) or homotetramer (250 kDa). The optimal temperature of the enzyme was 37 degrees C, and it exhibited activity over a broad pH range. The protease was strongly inhibited by TPCK and chelating agents. The enzymatic activity was restored upon addition of calcium. BLAST analysis with the sequence of internal peptides of the protein revealed two open reading frames within the genome of E. histolytica, homologous to members of the family S28, clan SC of serine proteases.  相似文献   

9.
10.
It is generally accepted that a majority of individuals infected by Entamoeba histolytica do not develop symptomatic disease. However, the parasite and the host factors contributing to the development of the disease, remain undetermined. It is also unclear why certain individuals develop extra-intestinal amebiasis without exhibiting apparent intestinal symptoms. An outbreak of amebic liver abscess in Tbilisi, Georgia in 1998-1999 suggested that the causative E. histolytica strain had an unusual propensity for extra-intestinal spread. To correlate the genetic differences with pathogenic potential of the parasite, we have examined the SREHP gene polymorphisms among Georgian E. histolytica isolates. Comparison of polymorphic patterns revealed the presence of several different genotypes of E. histolytica, thus preventing an association of a single genotype with hepatic disease, but supporting the previous finding of extensive genetic diversity among E. histolytica isolates from the same geographic origin.  相似文献   

11.
We studied the role of protein kinase C (PKC) and protein threonine phosphorylation in the inhibition and stimulation of growth of the protozoan parasite Entamoeba histolytica. PKC was activated after serum deprivation in E. histolytica and during this period proteins became threonine phosphorylated. Conversely, on serum stimulation of serum-deprived cells, PKC activation was rapidly reversed and the threonine phosphorylation of proteins quickly declined. Growth of E. histolytica was not affected by either PKC inhibitors H-7 and GF109203X or by down-regulation of PKC by Phorbol 12-Myristate 13-Acetate (PMA). Interestingly, very low doses of PMA which caused activation of PKC and were unable to down-regulate PKC after 48 h of culture, negatively influenced the growth of E. histolytica. Serine/threonine phosphatase inhibitors Okadaic acid and Calyculin A drastically inhibited growth of E. histolytica. In conclusion, the growth of E. histolytica is not adversely affected by PKC down-regulation. On the contrary, growth inhibition of E. histolytica is associated with activation of Ca(2+), Diacylglycerol (DAG)-dependent PKC, and threo nine phosphorylation of proteins.  相似文献   

12.
13.
We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.  相似文献   

14.
In addition to its classic glycolytic role, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated in many activities unrelated to glycolysis, such as membrane fusion, binding to host proteins and signal transduction. GAPDH can be the target of several modifications that allow incorporation to membranes and possible regulation of its activity; among these modifications is mono-ADP-ribosylation. This post-translational modification is important for the regulation of many cellular processes and is the mechanism of action of several bacterial toxins. In a previous study, we observed the extracellular ADP-ribosylation of a 37-kDa ameba protein. We report here that GAPDH and cysteine synthase A are the main ADP-ribosylated proteins in Entamoeba histolytica extracellular medium, GAPDH is secreted from ameba at 37 degrees C in a time-dependent manner, and its enzymatic activity is not inhibited by ADP-ribosylation. Extracellular GAPDH from ameba may play an important role in the survival of this human pathogen or in interaction with host molecules, as occurs in other organisms.  相似文献   

15.
16.
Phagocytosis plays an important role in the pathogenicity of the intestinal protozoan parasite Entamoeba histolytica. We compared the morphology of phagosomes and the kinetics of phagosome maturation using conventional light and electron microscopy and live imaging with video microscopy between the virulent E. histolytica and the closely-related, but non-virulent E. dispar species. Electron micrographs showed that axenically cultivated trophozoites of the two Entamoeba species revealed morphological differences in the number of bacteria contained in a single phagosome and the size of phagosomes. Video microscopy using pH-sensitive fluorescein isothiocynate-conjugated yeasts showed that phagosome acidification occurs within 2 min and persists for >12 h in both species. The acidity of phagosomes significantly differed between two species (4.58 +/- 0.36 or 5.83 +/- 0.38 in E. histolytica or E. dispar, respectively), which correlated well with the differences in the kinetics of degradation of promastigotes of GFP-expressing Leishmania amazonensis. The acidification of phagosomes was significantly inhibited by a myosin inhibitor, whereas it was only marginally inhibited by microtubules or actin inhibitors. A specific inhibitor of vacuolar ATPase, concanamycin A, interrupted both the acidification and degradation in phagosomes in both species, suggesting the ubiquitous role of vacuolar ATPase in the acidification and degradation in Entamoeba. In contrast, inhibitors against microtubules or cysteine proteases (CP) showed distinct effects on degradation in phagosomes between these two species. Although depolymerization of microtubules severely inhibited degradation in phagosomes of E. histolytica, it did not affect degradation in E. dispar. Similarly, the inhibition of CP significantly reduced degradation in phagosomes of E. histolytica, but not in E. dispar. These data suggest the presence of biochemical or functional differences in the involvement of microtubules and proteases in phagosome maturation and degradation between the two species.  相似文献   

17.
Entamoeba histolytica remains an important but enigmatic parasite. It displays both non-pathogenic and invasive pathogenic types, which can be distinguished clinically and by isoenzyme markers. Yet as debated in Parasitology Today last year(1), the relationship between these two forms remains unclear. Bacterial associates and reducing agents are known to play on important role in the culture of E. histolytica, and possibly in its differentiation and invasive mechanisms. This article briefly reviews available information on the role o f reducing agents, and explores the possibility that bacteria may play a role in reduction o f toxic oxygen product - thereby promoting the virulence of E. histolytica. The review is not definitive, but should help to stimulate further research in this neglected area.  相似文献   

18.
Few organisms are more aptly named than Entamoeba histolytica, an intestinal protozoan parasite that can lyse and destroy human tissue. Within the past four years, new models of E. histolytica infection have begun to illuminate how amoebic trophozoites cause intestinal disease and liver abscess, and have expanded our understanding of the remarkable killing ability of this parasite. Here, I summarize recent work on the interactions between E. histolytica and human intestine, and between E. histolytica and hepatocytes, and discuss what these studies tell us about the role of inflammation and programmed cell death in the pathogenesis of amoebiasis.  相似文献   

19.
20.
The varied organ tropisms and clinical presentations of infection by Entamoeba histolytica have stimulated interest in the role of parasite genetic diversity in virulence. We investigated genetic diversity among 54 E. histolytica isolates from Bangladesh by analyzing polymorphism in the serine-rich gene by nested PCR on DNA extracted from stool and liver aspirate pus. We detected both size and restriction site polymorphisms among the isolates within this endemic area. A combination of the nested PCR results and the AluI digestion of the PCR products examined yielded 25 distinct DNA banding patterns among the 42 stool isolates and an additional 9 distinct patterns among the 12 liver abscess isolates. Approximately half of the isolates had unique polymorphisms. Interestingly, the majority of E. histolytica from the liver had polymorphisms which were not present in intestinal isolates from the same geographic area. These data are consistent with the existence of genetic differences between E. histolytica which cause intestinal and those which cause hepatic disease. We conclude that there is genetic diversity within E. histolytica isolates from an endemic population as reflected in serine-rich E. histolytica protein gene polymorphism. The correlation of genetic differences with the pathogenic potential of E. histolytica strains and the implications of genetic diversity for the immunoprophylaxis of amebiasis require further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号