首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
内质网应激是未折叠蛋白质在内质网腔内的过量堆积和钙浓度失衡的一种应激反应,不仅参与细胞稳态的维持,而且在调节多种细胞应激反应方面具有重要意义。蛋白激酶R样内质网激酶(PERK)是介导内质网应激的三大关键信号分子之一,在细胞应激反应中具有明确和重要的调控作用。本文就PERK对基因毒应激、代谢应激和炎性应激的调节和分子机制做简要综述。  相似文献   

2.
二聚化:受体酪氨酸激酶活化的重要机制   总被引:1,自引:0,他引:1  
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构 ,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化 ,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制 ,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化  相似文献   

3.
受体酪氨酸激酶家族是一类具有内源性蛋白酪氨酸激酶活性的生长因子受体。它们具有相似的分子结构,其配体介导的受体活化主要是通过二聚化的机制来实现的。配体介导同源或异源的受体二聚化,不同的配体以不同的机制介导受体的二聚化。本文介绍了受体酪氨酸激酶家族不同亚类受体在其配体介导下二聚化的机制,并着重介绍了表皮生长因子受体家族各成员间的异二聚化及其引起的胞内信号转导途径的多样化。  相似文献   

4.
Eph-ephrin介导反向信号传递的研究进展   总被引:1,自引:0,他引:1  
双向信号传递是细胞间通讯领域中新近阐明的机制,酪氨酸激酶受体-配体(Eph-ephrin)介导的双向信号传递是此机制中的一个重要代表.Eph酪氨酸激酶家族受体及其配体ephrin家族成员是在神经发育、血管新生等方面起重要作用的分子,通过Eph向细胞内传递的信号称为正向信号,通过其配体ephrin的信号称为反向信号.Ephrin家族又可根据分子结构分为2个亚家族,其中ephrinB为跨膜蛋白,可通过酪氨酸磷酸化依赖和PDZ结合结构域介导2种方式向胞内传递反向信号,活化FAK、JNK、Wnt等信号通路,ephrinA为糖基磷脂酰肌醇锚定蛋白,也具有反向信号传递功能.  相似文献   

5.
生长因子及细胞因子的两条重要信号转导通路   总被引:4,自引:0,他引:4  
业已发现的大部分生长因子受体具有酪氨酸激酶活性,其信号传递以Ras通路为主;而多数细胞因子受体本身缺乏酪氨酸激酶活性,其信号传递过程通过JAKs及STATs两个重要的蛋白质家族的介导得以实现.信号转导通路的研究,对于认识各种生长因子及细胞因子的作用机制具有重要意义.  相似文献   

6.
Jak—STAT信号转导机制   总被引:4,自引:0,他引:4  
许多细胞因子受体尽管缺少激酶结构域,但与配体结合后仍能诱导蛋白质的酪氨酸磷酸化。近年来的研究证明这一过程是由Jak族蛋白质酪氨酸激酶的成员所介导的。Jak激酶通过和受体的近膜区域的相互作用而与之缔合。配体结合引起受体聚合以及Jak的酪氨酸磷酸化和激活,激活的Jak又使受体和STAT蛋白(信号转导物与转录激活剂)磷酸化、后直接参与基因转录的调控。本对这一新的胞内信号转导机制作一综述。  相似文献   

7.
关于胰岛素的作用机制,目前有一种假说,认为胰岛素与其受体的α亚基结合后将信息传递给β亚基,引起β亚基酪氨酸激酶自身磷酸化而激活。酪氨酸激酶可以使细胞内其他蛋白质磷酸化,从而启动一系列细胞内事件发挥胰岛素的多重调节作用。通过近六年来的深入研究,已经了解胰岛素受体酪氨酸激酶在介导胰岛素的绝大多数生物学效应中起着关键作用。本文对这方面的研究进展情况及前景作一简要综述。 (一)胰岛素受体的结构近年来采用亲和标记、免疫沉淀、亲和层析、分子克隆等技术,对胰岛素受体的结构进行了研究。现在已了解胰岛素受体分子由两个13.5万分子量的α亚基、两个9.5万分子量的β亚基,三对二硫键连接而成。胰岛素受体的α及β亚基是由一1382个氨基酸组成的前受体原  相似文献   

8.
Src激酶的功能研究新进展   总被引:2,自引:0,他引:2  
Src激酶家族是具有酪氨酸蛋白激酶活性的蛋白质,作为连接许多细胞外和细胞内重要信号途径的膜结合开关分子,Src激酶在受体介导的信号传递及细胞间通讯中具中心调节作用。最近发现它在淋巴因子介导的细胞存活及血管内皮生长因子介导的血管发生中也具有重要作用。  相似文献   

9.
神经营养素激活的细胞内信号传导   总被引:6,自引:0,他引:6  
神经营养素首先与细胞表面的Trk受体结合,诱导受体酪氨酸激酶激活。酪氨酸磷酸化的Trk通过与许多信号传递分子形成复合物而介导信号向下游传递。Ras的激活与神经营养素诱导的细胞分化密切相关。不依赖Ras的信号传导通路可能在神经元的存活、电兴奋性和细胞间粘连中具有重要作用。神经营养作用的特异性可能源自于神经营养因子信号传递过程和差异。  相似文献   

10.
G蛋白偶联受体转激活酪氨酸激酶受体机制   总被引:1,自引:0,他引:1  
蒋明  郭卉  赵菡  周爱云  林昕  许婵娟  刘剑峰 《现代生物医学进展》2011,(Z1):4767-4769,4771,4800
G蛋白偶联受体(G-protien coupled receptors,GPCRs)和酪氨酸激酶受体(receptor tyrosine kinases,RTKs)是体内两类重要的受体家族,介导着绝大多数信号事件。GPCRs能够"绑架"RTKs进行信号转导,即GPCRs能够在没有外加RTKs配体的情况下激活RTKs,这种现象称为转激活。作为转激活的核心过程,GPCR调控RTK磷酸化主要采取RTK配体依赖模式和非RTK配体依赖模式。不同的G蛋白亚型、酪氨酸磷酸激酶、酪氨酸磷酸酶(protein-tyrosine phosphatases,PTPs)以及活性氧自由基(reactiveoxygen species,ROS)均在此过程中具有重要作用。GPCR和RTK还能形成信号复合体(signaling complex)从而实现蛋白质之间的动态相互作用。对转激活的研究为GPCR靶点药物开发提供了新思路。  相似文献   

11.
未折叠蛋白反应的信号转导   总被引:6,自引:0,他引:6  
李明  丁健  缪泽鸿 《生命科学》2008,20(2):246-252
在内质网中,分泌性蛋白、跨膜蛋白和内质网驻留蛋白折叠成天然构象,经过修饰后,形成有活性的功能性蛋白质。如果蛋白质在内质网内的折叠受到抑制,造成未折叠蛋白聚集,将引起内质网应激。激活未折叠蛋白反应(unfolded protein response,UPR),使蛋白质的生物合成减少,内质网的降解功能增强,从而降低内质网负担,维持细胞内的稳态。如果内质网应激持续存在,则可能诱发细胞凋亡。研究表明,未折叠蛋白反应能在多种肿瘤细胞中发生,并能促进肿瘤细胞的生长。本文对未折叠蛋白反应与肿瘤研究的最新进展进行综述。  相似文献   

12.
内质网应激(endoplasmic reticulum stress,ERs)是内质网腔内错误折叠蛋白聚积的一种适应性反应,适度ERs通过激活未折叠蛋白反应起适应性的细胞保护作用,而过高和持久的ERs则通过诱导转录因子CHOP表达、激活caspase-12和c—Jun氨基末端激酶(JNK)等导致细胞凋亡。近年来,越来越多的研究提示内质网应激是神经退行性病变、2型糖尿病以及肥胖等疾病发生过程中的重要环节。对内质网应激的细胞效应分子机制进行综述。随着对ERs机制理解的深入,有可能会发现新的分子标志物或新的诊疗策略。  相似文献   

13.
气体植物激素乙烯在植物生长发育及应对胁迫的防御反应中起重要调控作用.通过20多年的研究,利用模式植物拟南芥,勾画出一条自内质网膜受体至细胞核内转录因子的线性乙烯信号转导通路.本文概述了研究乙烯信号转导的方法及乙烯信号转导的基本过程;阐述了最新发现的乙烯信号从内质网膜传递到细胞核的分子机制,即原本定位于内质网膜上的EIN2蛋白其C端被剪切之后进入细胞核,然后通过抑制EBF1/2而稳定转录因子EIN3/EIL1;根据最近多个小组报道EIN3/EIL1直接调控除乙烯响应基因之外的其他生物学过程相关基因,提出了EIN3/EIL1可以作为网络节点整合多条信号通路的新观点;通过分析不同信号通路调控EIN3/EIL1的方式,发现不仅EIN3/EIL1的蛋白稳定性受到调控,而且其转录活性还受到诸如JAZ,DELLA等转录调节因子的调控.本文展望了未来乙烯信号转导通路的研究方向与研究热点.  相似文献   

14.
孟冉  阮国良  杨代勤 《生命科学》2014,(10):1004-1011
内质网应激激活的未折叠蛋白反应(unfolded protein response,UPR)是维持机体代谢平衡的重要信号通路。同时,内质网与脂类合成、转运和分解密切相关。近来研究发现UPR对脂类代谢具有调节作用。主要讨论内质网应激激活的UPR对脂类合成、转运和分解的影响及其机制。  相似文献   

15.
Endoplasmic reticulum (ER) stress is a common feature of several physiological and pathological conditions affecting the function of the secretory pathway. To restore ER homeostasis, an orchestrated signaling pathway is engaged that is known as the unfolded protein response (UPR). The UPR has a primary function in stress adaptation and cell survival; however, under irreversible ER stress a switch to pro-apoptotic signaling events induces apoptosis of damaged cells. The mechanisms that initiate ER stress-dependent apoptosis are not fully understood. Several pathways have been described where we highlight the participation of the BCL-2 family of proteins and ER calcium release. In addition, recent findings also suggest that microRNAs and oxidative stress are relevant players on the transition from adaptive to cell death programs. Here we provide a global and integrated overview of the signaling networks that may determine the elimination of a cell under chronic ER stress. This article is part of a Special Section entitled: Cell Death Pathways. Guest Editors: Frank Madeo and Slaven Stekovic.  相似文献   

16.
The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.  相似文献   

17.
Increasing evidence suggests that stress signaling pathways emanating from the endoplasmic reticulum (ER) are important to the pathogenesis of both type 1 and type 2 diabetes. Recent observations indicate that ER stress signaling participates in maintaining the ER homeostasis of pancreatic beta-cells. Either a high level of ER stress or defective ER stress signaling in beta-cells may cause an imbalance in ER homeostasis and lead to beta-cell apoptosis and autoimmune response. In addition, it has been suggested that ER stress attributes to insulin resistance in patients with type 2 diabetes. It is necessary to study the relationship between ER stress and diabetes in order to develop new therapeutic approaches to diabetes based on drugs that block the ER stress-mediated cell-death pathway and insulin resistance.  相似文献   

18.
Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.  相似文献   

19.
Here we studied the cellular mechanisms of ursolic acid's anti-bladder cancer ability by focusing on endoplasmic reticulum stress (ER stress) signaling. We show that ursolic acid induces a significant ER stress response in cultured human bladder cancer T24 cells. ER stress inhibitor salubrinal, or PERK silencing, diminishes ursolic acid-induced anti-T24 cell effects. Salubrinal inhibits ursolic acid-induced CHOP expression, Bim ER accumulation and caspase-3 activation in T24 cells. Ursolic acid induces IRE1–TRAF2–ASK1 signaling complex formation to activate pro-apoptotic ASK1–JNK signaling. We suggest that ER stress contributes to ursolic acid's effects against bladder cancer cells.  相似文献   

20.
《Cellular signalling》2014,26(7):1539-1548
Progranulin (PGRN) was reported to be a stress-response factor in response to hypoxia and acidosis. Here we present evidences demonstrating that PGRN is also an endoplasmic reticulum (ER) stress responsive factor: PGRN expression was induced and its activation of Erk1/2 and Akt signaling enhanced in response to ER stress; Normal ER stress response was lost in PGRN deficient cells and PGRN deficient cells became hypersusceptible to ER stress-induced apoptosis; additionally, recombinant PGRN could rescue the defects in ER-stress responses seen in PGRN deficient cells. Mechanistic studies indicated that PGRN/TNFR2 was critical for PGRN mediated regulation of ER stress response: similar to PGRN, the expression of TNFR2, but not TNFR1, was also induced in the course of ER stress; in addition, the association between PGRN and TNFR2 was markedly enhanced following ER stress; More importantly, PGRN protection of ER stress induced apoptosis was abolished when TNFR2 signaling was blocked. In addition, the 2nd and 3rd cysteine-rich domains (CRD) in the extracellular portion of TNFR2 (CRD2CRD3), known to directly bind to PGRN, disturbed the interaction of PGRN with TNFR2, and in turn abolished PGRN-mediated activation of Erk1/2 and Akt signaling and protection against apoptosis in response to ER-stress. Collectively, PGRN plays an important role in ER stress and regulates ER stress response through interacting with TNFR2. This study provides new insight into PGRN regulation of stress response and may also present PGRN as a potential molecular target for treating stress-associated disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号