首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An NADP(+)-dependent alcohol dehydrogenase was found in Euglena gracilis Z grown on 1-hexanol, while it was detected at low activity in cells grown on ethanol or glucose as a carbon source, indicating that the enzyme is induced by the addition of 1-hexanol into the medium as a carbon source. This enzyme was extremely unstable, even at 4 degrees C, unless 20% ethylene glycol was added. The optimal pH was 8.8-9.0 for oxidation reaction. The apparent K(m) values for 1-hexanol and NADP(+) were found to be 6.79 mM and 46.7 microM for this enzyme, respectively. The substrate specificity of this enzyme was very different from that of already purified NAD(+)-specific ethanol dehydrogenase by showing the highest activity with 1-hexanol as a substrate, followed by 1-pentanol and 1-butanol, and there was very little activity with ethanol and 1-propanol. This enzyme was active towards the primary alcohols but not secondary alcohols. Accordingly, since the NADP(+)-specific enzyme was separated on DEAE cellulose column, Euglena was confirmed to contain a novel enzyme to be active towards middle and long-chain length of fatty alcohols.  相似文献   

2.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

3.
Purification and characterization of enzymes metabolizing retinaldehyde, propionaldehyde, and octanaldehyde from four human livers and three kidneys were done to identify enzymes metabolizing retinaldehyde and their relationship to enzymes metabolizing other aldehydes. The tissue fractionation patterns from human liver and kidney were the same, indicating presence of the same enzymes in human liver and kidney. Moreover, in both organs the major NAD(+)-dependent retinaldehyde activity copurified with the propionaldehyde and octanaldehyde activities; in both organs the major NAD(+)-dependent retinaldehyde activity was associated with the E1 isozyme (coded for by aldh1 gene) of human aldehyde dehydrogenase. A small amount of NAD(+)-dependent retinaldehyde activity was associated with the E2 isozyme (product of aldh2 gene) of aldehyde dehydrogenase. Some NAD(+)-independent retinaldehyde activity in both organs was associated with aldehyde oxidase, which could be easily separated from dehydrogenases. Employing cellular retinoid-binding protein (CRBP), purified from human liver, demonstrated that E1 isozyme (but not E2 isozyme) could utilize CRBP-bound retinaldehyde as substrate, a feature thought to be specific to retinaldehyde dehydrogenases. This is the first report of CRBP-bound retinaldehyde functioning as substrate for aldehyde dehydrogenase of broad substrate specificity. Thus, it is concluded that in the human organism, retinaldehyde dehydrogenase (coded for by raldH1 gene) and broad substrate specificity E1 (a member of EC 1. 2.1.3 aldehyde dehydrogenase family) are the same enzyme. These results suggest that the E1 isozyme may be more important to alcoholism than the acetaldehyde-metabolizing enzyme, E2, because competition between acetaldehyde and retinaldehyde could result in abnormalities associated with vitamin A metabolism and alcoholism.  相似文献   

4.
Present evidence suggests that skin is an important organ of prostaglandin metabolism. To clarify its role, the basic kinetics of 15-hydroxyprostaglandin dehydrogenase (PGDH) from rat skin were investigated with either NAD+ of NADP+ as co-substrate. Prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E2 (PGE2) were used as substrates and preliminary studies were made of the inhibitory effects of the reduced co-substrates NADH and NADPH. A radiochemical assay was used in which [3H]PGF2 alpha or [14C]PGE2 were incubated with high-speed supernatant of rat skin homogenates. The substrate and products were then extracted by solvent partition, separated by t.l.c. and quantified by liquid-scintillation counting. At linear reaction rates and at an NAD+ concentration of 10 mM the mean apparent Km for PGF2 alpha was 24 microM with a mean apparent Vmax. of 9.8 nmol/s per litre of reaction mixture. For PGE2 the mean apparent Km was 8 microM, with a mean apparent Vmax, of 2.7 nmol/s per litre of reaction mixture. With NADP+ as a co-substrate at a concentration of 5 mM a mean apparent Km of 23 microM was obtained for PGF2 alpha with a mean apparent Vmax. of 5.2 nmol/s per litre. For PGE2 values of 7.5 microM and 3.0 nmol/s per litre were obtained respectively. These results show that skin contains NAD+- and NADP+-dependent PGDH. An important finding was that the NADP+-linked enzyme gave Km values for PGE2 that were considerably lower than those reported for NADP+-linked PGDH from other tissues. Furthermore, preliminary inhibition studies with the NAD+-linked PGDH system indicate that this enzyme is not only inhibited by NADH, but also by NADPH, a property not previously reported for NAD+-linked PGDH derived from other tissues.  相似文献   

5.
In Sm. lipolytica one NAD+-dependent and three NADP+-dependent alcohol dehydrogenases are detectable by polyacrylamide gelelectrophoresis. The NAD+-dependent ADH (ADH I), with a molecular weight of 240,000 daltons, reacts more intensively with long-chain alcohols (octanol) than with short-chain alcohols (methanol, ethanol). The ADH I is not or only minimally subject to glucose repression. Besides the ADH I band no additional inducible NAD+-dependent ADH band is gel-electrophoretically detectable during growth of yeast cells in medium containing ethanol or paraffin. The ADH I band is very probably formed by two ADH enzymes with the same electrophoretic mobility. The NADP+-dependent alcohol dehydrogenases (ADH II--IV) react with methanol, ethanol and octanol with different intensity. In polyacrylamide gradients two bands of NADP+-dependent ADH are detectable: one with a molecular weight of 70,000 daltons and the other with 120,000 daltons. The occurrence of the three NADP+-dependent alcohol dehydrogenases is regulated by the carbon source of the medium. Sm. lipolytica shows a high tolerance against allylalcohol. Resistant mutants can be isolated only at concentrations of 1 M allylalcohol in the medium. All isolates of allylalcohol-resistant mutants show identical growth in medium containing ethanol as the wild type strain.  相似文献   

6.
L Zhang  B Ahvazi  R Szittner  A Vrielink  E Meighen 《Biochemistry》1999,38(35):11440-11447
The fatty aldehyde dehydrogenase from the luminescent bacterium, Vibrio harveyi (Vh-ALDH), is unique with respect to its high specificity for NADP(+) over NAD(+). By mutation of a single threonine residue (Thr175) immediately downstream of the beta(B) strand in the Rossmann fold, the nucleotide specificity of Vh-ALDH has been changed from NADP(+) to NAD(+). Replacement of Thr175 by a negatively charged residue (Asp or Glu) resulted in an increase in k(cat)/K(m) for NAD(+) relative to that for NADP(+) of up to 5000-fold due to a decrease for NAD(+) and an increase for NADP(+) in their respective Michaelis constants (K(a)). Differential protection by NAD(+) and NADP(+) against thermal inactivation and comparison of the dissociation constants of NMN, 2'-AMP, 2'5'-ADP, and 5'-AMP for these mutants and the wild-type enzyme clearly support the change in nucleotide specificity. Moreover, replacement of Thr175 with polar residues (N, S, or Q) demonstrated that a more efficient NAD(+)-dependent enzyme T175Q could be created without loss of NADP(+)-dependent activity. Analysis of the three-dimensional structure of Vh-ALDH with bound NADP(+) showed that the hydroxyl group of Thr175 forms a hydrogen bond to the 2'-phosphate of NADP(+). Replacement with glutamic acid or glutamine strengthened interactions with NAD(+) and indicated why threonine would be the preferred polar residue at the nucleotide recognition site in NADP(+)-specific aldehyde dehydrogenases. These results have shown that the size and the structure of the residue at the nucleotide recognition site play the key roles in differentiating between NAD(+) and NADP(+) interactions while the presence of a negative charge is responsible for the decrease in interactions with NADP(+) in Vh-ALDH.  相似文献   

7.
Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme which exhibited an apparent Km for acetaldehyde of 50 microM and a Vmax of 183 nmol/min. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is a soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH exhibited apparent Kms for hexadecanol of 1.6 and 2.8 microM in crude extracts derived from hexadecane- and hexadecanol-grown cells, respectively. HDH was distinct from ADH-A and ADH-B, since HDH and ADH-A were not coinduced; Eth1 had wild-type levels of HDH; and HDH requires NAD, while ADH-B requires NADP. NAD- and NADP-independent HDH activity was not detected in the soluble or membrane fraction of extracts derived from hexadecane- or hexadecanol-grown cells. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.  相似文献   

8.
Drosophila alcohol dehydrogenase (ADH), an NAD(+)-dependent dehydrogenase, shares little sequence similarity with horse liver ADH. However, these two enzymes do have substantial similarity in their secondary structure at the NAD(+)-binding domain [Benyajati, C., Place, A. P., Powers, D. A. & Sofer, W. (1981) Proc. Natl Acad. Sci. USA 78, 2717-2721]. Asp38, a conserved residue between Drosophila and horse liver ADH, appears to interact with the hydroxyl groups of the ribose moiety in the AMP portion of NAD+. A secondary-structure comparison between the nucleotide-binding domain of NAD(+)-dependent enzymes and that of NADP(+)-dependent enzymes also suggests that Asp38 could play an important role in cofactor specificity. Mutating Asp38 of Drosophila ADH into Asn38 decreases Km(app)NADP 62-fold and increases kcat/Km(app)NADP 590-fold at pH 9.8, when compared with wild-type ADH. These results suggest that Asp38 is in the NAD(+)-binding domain and its substituent, Asn38, allows Drosophila ADH to use both NAD+ and NADP+ as its cofactor. The observations from the experiments of thermal denaturation and kinetic measurement with pH also confirm that the repulsion between the negative charges of Asp38 and 2'-phosphate of NADP+ is the major energy barrier for NADP+ to serve as a cofactor for Drosophila ADH.  相似文献   

9.
Renal hyperosmotic conditions may produce reactive oxygen species, which could have a deleterious effect on the enzymes involved in osmoregulation. Hydrogen peroxide was used to provoke oxidative stress in the environment of betaine aldehyde dehydrogenase in vitro. Enzyme activity was reduced as hydrogen peroxide concentration was increased. Over 50% of the enzyme activity was lost at 100 μM hydrogen peroxide at two temperatures tested. At pH 8.0, under physiological ionic strength conditions, peroxide inhibited the enzyme. Initial velocity assays of betaine aldehyde dehydrogenase in the presence of hydrogen peroxide (0-200 μM) showed noncompetitive inhibition with respect to NAD(+) or to betaine aldehyde at saturating concentrations of the other substrate at pH 7.0 or 8.0. Inhibition data showed that apparent V(max) decreased 40% and 26% under betaine aldehyde and NAD(+) saturating concentrations at pH 8.0, while at pH 7.0 V(max) decreased 40% and 29% at betaine aldehyde and NAD(+) saturating concentrations. There was little change in apparent Km(NAD) at either pH, while Km(BA) increased at pH 7.0. K(i) values at pH 8 and 7 were calculated. Our results suggest that porcine kidney betaine aldehyde dehydrogenase could be inhibited by hydrogen peroxide in vivo, thus compromising the synthesis of glycine betaine.  相似文献   

10.
Benzaldehyde dehydrogenase I was purified from Acinetobacter calcoaceticus by DEAE-Sephacel, phenyl-Sepharose and f.p.l.c. gel-filtration chromatography. The enzyme was homogeneous and completely free from the isofunctional enzyme benzaldehyde dehydrogenase II, as judged by denaturing and non-denaturing polyacrylamide-gel electrophoresis. The subunit Mr value was 56,000 (determined by SDS/polyacrylamide-gel electrophoresis). Estimations of the native Mr value by gel-filtration chromatography gave values of 141,000 with a f.p.l.c. Superose 6 column, but 219,000 with Sephacryl S300. Chemical cross-linking of the enzyme subunits indicated that the enzyme is tetrameric. Benzaldehyde dehydrogenase I was activated more than 100-fold by K+, Rb+ and NH4+, and the apparent Km for K+ was 11.2 mM. The pH optimum in the presence of K+ was 9.5 and the pI of the enzyme was 5.55. The apparent Km values for benzaldehyde and NAD+ were 0.69 microM and 96 microM respectively, and the maximum velocity was approx. 110 mumol/min per mg of protein. Various substituted benzaldehydes were oxidized at significant rates, and NADP+ was also used as cofactor, although much less effectively than NAD+. Benzaldehyde dehydrogenase I had an NAD+-activated esterase activity with 4-nitrophenol acetate as substrate, and the dehydrogenase activity was inhibited by a range of thiol-blocking reagents. The absorption spectrum indicated that there was no bound cofactor or prosthetic group. Some of the properties of the enzyme are compared with those of other aldehyde dehydrogenases, specifically the very similar isofunctional enzyme benzaldehyde dehydrogenase II from the same organism.  相似文献   

11.
The Gluconobacter oxydans 621H genome contains two genes (gox1122 and gox0499) that encode putative cytosolic NAD(P)-dependent aldehyde dehydrogenases. Each gene was expressed in Escherichia coli, and the recombinant enzymes were purified and characterized. The native protein Gox1122 exhibited an apparent molecular mass of 50.1 kDa, and the subunit mass was 50.5 kDa, indicating a monomeric structure of the native enzyme. The preferred substrates were acetaldehyde and NADP. The enzyme also oxidized other short-chained aliphatic and aromatic aldehydes at lower rates. Recombinant protein Gox0499 was composed of a single subunit and had an apparent molecular mass of 49.5 kDa. The substrate spectrum of Gox0499 was broad with a preference for long-chained aliphatic and aromatic aldehydes. Highest activities were obtained using dodecanal and NAD as substrates. RT real-time PCR showed that genes gox0499 and gox1122 were expressed at an elevated level (about 3-fold) when the cells were exposed to ethanol and dodecanal in comparison to control cells.  相似文献   

12.
Thermoanaerobacter mathranii contains four genes, adhA, adhB, bdhA and adhE, predicted to code for alcohol dehydrogenases involved in ethanol metabolism. These alcohol dehydrogenases were characterized as NADP(H)-dependent primary alcohol dehydrogenase (AdhA), secondary alcohol dehydrogenase (AdhB), butanol dehydrogenase (BdhA) and NAD(H)-dependent bifunctional aldehyde/alcohol dehydrogenase (AdhE), respectively. Here we observed that AdhE is an important enzyme responsible for ethanol production in T. mathranii based on the constructed adh knockout strains. An adhE knockout strain fails to produce ethanol as a fermentation product, while other adh knockout strains showed no significant difference from the wild type. Further analysis revealed that the ΔadhE strain was defective in aldehyde dehydrogenase activity, but still maintained alcohol dehydrogenase activity. This showed that AdhE is the major aldehyde dehydrogenase in the cell and functions predominantly in the acetyl-CoA reduction to acetaldehyde in the ethanol formation pathway. Finally, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Overexpressions of AdhE in strain BG1E1 with xylose as a substrate facilitate the production of ethanol at an increased yield.  相似文献   

13.
Rat kidney was shown to contain two NADPH-linked aldehyde reductases (alcohol:NADP+) oxidoreductase, EC 1.1.1.2) with different substrate affinities. The high-Km aldehyde reductase, which was purified to apparent homogeneity, had a molecular weight of 32 000 as determined by Sephadex G-100 gel filtration, and of 37 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme reduced various aliphatic aldehydes of different carbon-chain lengths besides many chemicals containing aldehyde groups. The Km values for n-hexadecanal and n-octadecanal were 8 microM and 4 microM, respectively. Bovine serum albumin (1.8 mM) stimulated the reduction of n-hexadecanal and n-octadecanal, and increased the Vmax values by about 15-fold without changing the Km values. The kidney enzyme was not distinguishable from the brain and liver high-Km aldehyde reductases in mobility on polyacrylamide gel electrophoresis, immunological properties, peptide maps or substrate specificity.  相似文献   

14.
Human retinol dehydrogenase 10 (RDH10) was implicated in the oxidation of all-trans-retinol for biosynthesis of all-trans-retinoic acid, however, initial assays suggested that RDH10 prefers NADP(+) as a cofactor, undermining its role as an oxidative enzyme. Here, we present evidence that RDH10 is, in fact, a strictly NAD(+)-dependent enzyme with multisubstrate specificity that recognizes cis-retinols as well as all-trans-retinol as substrates. RDH10 has a relatively high apparent K(m) value for NAD(+) (~100 microm) but the lowest apparent K(m) value for all-trans-retinol (~0.035 microm) among all NAD(+)-dependent retinoid oxidoreductases. Due to its high affinity for all-trans-retinol, RDH10 exhibits a greater rate of retinol oxidation in the presence of cellular retinol-binding protein type I (CRBPI) than human microsomal RoDH4, but like RoDH4, RDH10 does not recognize retinol bound to CRBPI as a substrate. Consistent with its preference for NAD(+), RDH10 functions exclusively in the oxidative direction in the cells, increasing the levels of retinaldehyde and retinoic acid. Targeted small interfering RNA-mediated silencing of endogenous RDH10 or RoDH4 expression in human cells results in a significant decrease in retinoic acid production from retinol, identifying both human enzymes as physiologically relevant retinol dehydrogenases. The dual cis/trans substrate specificity suggests a dual physiological role for RDH10: in the biosynthesis of 11-cis-retinaldehyde for vision as well as the biosynthesis of all-trans-retinoic acid for differentiation and development.  相似文献   

15.
Glutamate dehydrogenase from axenic bacterial cultures of a new microorganism, called GWE1, isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular-exclusion liquid chromatography. The apparent molecular mass of the native enzyme was 250.5 kDa and was shown to be an hexamer with similar subunits of molecular mass 40.5 kDa. For glutamate oxidation, the enzyme showed an optimal pH and temperature of 8.0 and 70 degrees C, respectively. In contrast to other glutamate dehydrogenases isolated from bacteria, the enzyme isolated in this study can use both NAD(+) and NADP(+) as electron acceptors, displaying more affinity for NADP(+) than for NAD(+). No activity was detected with NADH or NADPH, 2-oxoglutarate and ammonia. The enzyme was exceptionally thermostable, maintaining more than 70% of activity after incubating at 100(o)C for more than five hours suggesting being one of the most thermoestable enzymes reported in the family of dehydrogenases.  相似文献   

16.
This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD(+)-dependent dehydrogenases. Specifically, the synthesis of highly substituted N(6)-linked immobilized NAD(+) derivatives is described using a rapid solid-phase modular approach. Other modifications of the N(6)-linked immobilized NAD(+) derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 A) in an attempt to minimize nonbiospecific interactions. Analysis of the N(6)-linked NAD(+) derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S(6)-linked immobilized NAD(+) derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart l-lactate dehydrogenase (l-LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. l-phenylalanine dehydrogenase (l-PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and d-phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD(+)-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S(6)-linked immobilized cofactor derivatives than for the new N(6)-linked derivatives. In contrast, the NAD(+)-dependent phenylalanine dehydrogenase showed no affinity for the S(6)-linked immobilized NAD(+) derivative, but was locked-on strongly to the N(6)-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N(6)-linked immobilized NADP(+) derivative in the presence of d-phenylalanine. This differential locking-on of NAD(+)-dependent dehydrogenases to N(6)-linked and S(6)-linked immobilized NAD(+) derivatives cannot be explained in terms of final accessible substitutions levels, but suggests fundamental differences in affinity of the three test enzymes for NAD(+) immobilized via N(6)-linkage as compared to thiol-linkage.  相似文献   

17.
Bisubstrate inhibitors, obtained by covalently linking 2-oxoglutarate with NAD+ and NADP+, were synthesized and tested for their ability to inhibit NAD+- and NADP+-dependent isocitrate dehydrogenases from pig heart mitochondria. The NADP+-dependent enzyme was specifically inhibited by the NADP oxoglutarate adduct and not by the NAD adduct. The NADP adduct was competitive with both coenzyme and substrate, isocitrate. In contrast, the NAD+-dependent enzyme was inhibited by both adducts. NAD oxoglutarate is competitive with both NAD+ and isocitrate while the NADP adduct is competitive with isocitrate but not with NAD+. Nevertheless conditions could be set up so that use of these inhibitors would be feasible for a metabolic study.  相似文献   

18.
1. Mitochondrial aldehyde dehydrogenase is purified to near homogeneity by hydroxylapatite-, affinity- and hydrophobic interaction-chromatography. 2. The enzyme is an oligomeric protein and its molecular weight, as determined by gel-filtration, is 117,000 +/- 5000. 3. Active only in the presence of exogenous sulfhydryl compounds and NAD(+)-dependent, aldehyde dehydrogenase works optimally with linear-chain aliphatic aldehydes and is practically inactive with benzaldehyde. The pH-optimum is at about pH 8.5. 4. Km-Values for aliphatic aldehydes (C2-C6) range between 0.17 and 0.32 microM. The Km for NAD+ increases from 16 microM with acetaldehyde to 71 microM with capronaldehyde. 5. Millimolar concentrations of Mg2+ promote high increases of both V and Km for NAD+. At the same time, saturation curves with C4-C6 aldehydes can be simulated with a substrate inhibition model. 6. Inhibition by NADH is competitive: with capronaldehyde, the inhibition constant for NADH is 52 microM in the absence of Mg2+ and 14 microM in the presence of 4 mM Mg2+; with acetaldehyde, the inhibition constant is about three times higher (36 and 159 microM, respectively).  相似文献   

19.
Aminopropionaldehyde dehydrogenase was purified to apparent homogeneity from 1,3-diaminopropane-grown cells of Arthrobacter sp. TMP-1. The native molecular mass and the subunit molecular mass of the enzyme were approximately 20,5000 and 52,000, respectively, suggesting that the enzyme is a tetramer of identical subunits. The apparent Michaelis constant (K(m)) for 1,3-diaminopropane was approximately 3 microM. The enzyme equally used both NAD(+) and NADP(+) as coenzymes. The apparent K(m) values for NAD(+) and NADP(+) were 255 microM and 108 microM, respectively. The maximum reaction rates (V(max)) for NAD(+) and NADP(+) were 102 and 83.3 micromol min(-1) mg(-1), respectively. Some tested aliphatic aldehydes and aromatic aldehydes were inert as substrates. The optimum pH was 8.0-8.5. The enzyme was sensitive to sulfhydryl group-modifying reagents.  相似文献   

20.
The enzymes catalyzing the NAD-dependent oxidation of malonic dialdehyde (MDA) were isolated from rat liver extracts. Upon 5'-AMP-Sepharose chromatography MDA dehydrogenase was separated into two isoforms, I and II. Isoform I was eluted from the affinity carrier with a 0.1 M phosphate buffer pH 8.0. This isoform had a broad substrate specificity towards aliphatic and aromatic aldehydes. Kinetic studies showed that short- and medium-chain aliphatic aldehydes (C2-C6) were characterized by the lowest Km values and the highest Vmax values. The Km' values for MDA and acetaldehyde were 2.8 microM and 0.69 microM, respectively. Isoform II was eluted with a 0.1 M phosphate buffer pH 8.0 containing 0.5 mM NAD, was the most active with medium- and long-chain aliphatic aldehydes (C6-C11) and had Km values for MDA and acetaldehyde equal to 37 microM and 52 microM, respectively. Isoform I was much more sensitive towards disulfiram inhibition than isoform II. Both isoforms had an identical molecular mass (93 kD) upon gel filtration. It is concluded that MDA dehydrogenase isoform I is identical to mitochondrial aldehyde dehydrogenase having a low Km for acetaldehyde, whereas isoform II may be localized in liver cytosol. The role of aldehyde dehydrogenases in the metabolism of aldehydes derived from lipid peroxidation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号