首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Human neutrophils treated with phorbol 12-myristate 13-acetate (PMA) or dioctanoylglycerol exhibited a large (10-fold), sustained accumulation of the mass of diradylglycerol, beginning 1 min after stimulation and continuing for 30 to 60 min. Phorbol dibutyrate was less potent than PMA in stimulating diradylglycerol accumulation, whereas the 4-alpha analogs of PMA and phorbol dibutyrate were inactive. Submaximal concentrations of PMA (0.5 to 2.5 nM) plus the calcium ionophore, ionomycin (15 to 60 nM), led to synergistic accumulation of diradylglycerols. Chlorpromazine and sphingosine, inhibitors of protein kinase C, blocked PMA-stimulated accumulation of diradylglycerol with IC50 concentrations of 32 and 9 microM, respectively, paralleling their inhibition of PMA-stimulated O2- production. These compounds also inhibited the ionomycin-stimulated accumulation of diradylglycerols. A third protein kinase C inhibitor, H-7, was less effective, inhibiting PMA-stimulated accumulation of diradylglycerol by 25% at 100 microM. Differential sensitivity to alkaline hydrolysis suggests that diradylglycerols that accumulate in response to PMA or ionomycin stimulation are composed of a mixture of two distinct diglyceride species, diacylglycerols and alkylacylglycerols. Whereas diacylglycerol may activate cellular protein kinase C, the importance of the production of alkylacylglycerols is uncertain.  相似文献   

2.
The cytokine, TNF-alpha, interacts with human neutrophils (PMN) via specific membrane receptors and primes leukotriene B4 (LTB4) production in PMN for subsequent stimulation by calcium ionophores. We have further examined the effects of TNF-alpha on arachidonic acid (AA) release, LTB4 production, and platelet-activating factor (PAF) formation in PMN by prelabeling cells with either [3H]AA or [3H]lyso-PAF, priming with human rTNF-alpha, and then stimulating with the chemotactic peptide, FMLP. TNF-alpha, alone, had little effect; minimal AA release, LTB4 or PAF production occurred after PMN were incubated with 0 to 1000 U/ml TNF-alpha. However, when PMN were first preincubated with 100 U/ml TNF-alpha for 30 min and subsequently challenged with 1 microM FMLP, both [3H] AA release and LTB4 production were elevated two- to threefold over control values. Measurement of AA mass by gas chromatography and LTB4 production by RIA confirmed the radiolabeled results. TNF-alpha priming also increased PAF formation after FMLP stimulation. These results demonstrate that TNF-alpha priming before stimulation with a physiologic agonist can enhance activation of phospholipase A2 (PLA2) resulting in increased AA release and can facilitate the activities of 5-lipoxygenase (LTB4 production) and acetyltransferase (PAF formation). Reports in the literature have hypothesized that the priming mechanism involves either production of PLA2 metabolites, increased diglyceride (DG) levels, or enhanced cytosolic calcium levels induced by the priming agent. We investigated these possibilities in TNF-alpha priming of PMN and report that TNF-alpha had no direct effect on PLA2 activation or metabolite formation. Treatment of PMN with TNF-alpha did not induce DG formation and, in the absence of cytochalasin B, no increased DG production (measured by both radiolabel techniques and mass determinations) occurred after TNF-alpha priming followed by FMLP stimulation. TNF-alpha also had no effect on basal cytosolic calcium and did not enhance intracellular calcium levels after FMLP stimulation. These results suggest that an alternative, as yet undefined, mechanism is active in TNF-alpha priming of human PMN.  相似文献   

3.
4.
5.
Lipid X, a monosaccharide precursor of the lipid A component of LPS, has been found to antagonize LPS-induced priming of human neutrophils in a manner consistent with competitive inhibition. In this investigation, the inhibition of neutrophil priming by lipid A analogs was found to be specific for LPS-induced priming. Priming of neutrophils by TNF, IL-8, and C5a were all unaffected by increasing concentrations of 3-aza-lipid X-4-phosphate (compound 3), a monosaccharide LPS-antagonist. Unlike lipid X, the pattern of antagonism exhibited by some monosaccharide LPS-antagonists was noncompetitive-like. The relationship between the chemical structure and inhibition pattern was found to be complex and not simply related to the type of acyl linkage at the C-3 position of the glucosamine backbone. Lipid A analogs were found to antagonize calcium ionophore A23187-stimulated leukotriene B4 (LTB4) production from LPS-primed neutrophils in a pattern of inhibition qualitatively similar to that seen with FMLP-stimulated O2- production. Resting and FMLP-stimulated (peak) cytosolic-free calcium levels did not differ significantly between unprimed and LPS-primed neutrophils, (p = 0.67 and p = 0.97, respectively). Furthermore, antagonism of LPS-mediated priming by 3-aza-lipid X-4-phosphate (compound 3) could not be explained by changes in intracellular calcium flux despite marked inhibition of O2- production (p less than 0.0001). Thus, lipid A analogs antagonize only LPS-induced priming and the pattern of inhibition is dependent on the chemical structure. Inhibition of LPS-induced priming by lipid A analogs may involve an early step in the signal transduction pathway common to both O2- and LTB4 generation, but independent of intracellular calcium concentration.  相似文献   

6.
To study human neutrophil (polymorphonuclear leukocyte (PMN)) migration and killing of bacteria in an environment similar to that found in inflamed tissues in vivo, we have used fibrin gels. Fibrin gels (1500 microm thick) containing Staphylococcus epidermidis were formed in Boyden-type chemotaxis chambers. PMN migrated < 300 microm into these gels in 6 h and did not kill S. epidermidis when the gels contained heat-inactivated serum, C5-deficient serum, a streptococcal peptidase specific for a fragment of cleaved C5 (C5a), or anti-C5aR IgG. In contrast, in gels containing normal human serum, PMN migrated approximately 1000 microm into the gels in 4 h and into the full thickness of the gels in 6 h, and killed 90% of S. epidermidis in 6 h. fMLP reduced PMN migration into fibrin gels and allowed S. epidermidis to increase by approximately 300% in 4 h, whereas leukotriene B(4) stimulated PMN to migrate the full thickness of the gels and to kill 80% of S. epidermidis in 4 h. We conclude that both complement opsonization and C5a-stimulated chemotaxis are required for PMN bacterial killing in fibrin gels, and that fMLP inhibits PMN bactericidal activity in fibrin gels. The latter finding is surprising and suggests that in the presence of fibrin fMLP promotes bacterial virulence.  相似文献   

7.
Phospholipase D (PLD) plays a major role in the activation of the neutrophil respiratory burst. However, the repertoire of PLD isoforms present in these primary cells, the precise mechanism of activation, and the impact of cell priming on PLD activity and localization remain poorly defined. RT-PCR analysis showed that both PLD1 and PLD2 isoforms are expressed in human neutrophils, with PLD1 expressed at a higher level. Endogenous PLD1 was detected by immunoprecipitation and Western blotting, and was predominantly membrane-associated under control and primed/stimulated conditions. Immunofluorescence showed that PLD had a punctate distribution throughout the cell, which was not altered after stimulation by soluble agonists. In contrast, PLD localized to the phagolysosome membrane after ingestion of nonopsonized zymosan particles. We also demonstrate that tumour necrosis factor alpha greatly potentiates agonist-stimulated PLD activation, myeloperoxidase release, and superoxide anion generation, and that PLD activation occurs via a phosphatidylinositol 3-kinase-sensitive and brefeldin-sensitive ADP-ribosylation factor GTPase-regulated mechanism. Moreover, propranolol, which causes an increase in PLD-derived phosphatidic acid accumulation, caused a selective increase in agonist-stimulated myeloperoxidase release. Our results indicate that priming is a critical regulator of PLD activation, that the PLD-generated lipid products exert divergent effects on neutrophil functional responses, that PLD1 is the major PLD isoform present in human neutrophils, and that PLD1 actively translocates to the phagosomal wall after particle ingestion.  相似文献   

8.
We have investigated how LTB4, an endogenous chemoattractant encountered early in the inflammatory process, and fMLP, a bacteria-derived chemotactic peptide emanating from the site of infection, mediate inside-out regulation of the beta2-integrin. The role of the two chemoattractants on beta2-integrin avidity was investigated by measuring their effect on beta2-integrin clustering and surface mobility, whereas their effect on beta2-integrin affinity was measured by the expression of a high affinity epitope, a ligand-binding domain on beta2-integrins, and by integrin binding to s-ICAM. We find that the two chemoattractants modulate the beta2-integrin differently. LTB4 induces an increase in integrin clustering and surface mobility, but only a modest increase in integrin affinity. fMLP evokes a large increase in beta2-integrin affinity as well as in clustering and mobility. Lipoxin, which acts as a stop signal for the functions mediated by pro-inflammatory agents, was used as a tool for further examining the inside-out mechanisms. While LTB4-induced integrin clustering and mobility were inhibited by lipoxin, only a minor inhibition of fMLP-induced beta2-integrin avidity and no inhibition of integrin affinity were detected. The different modes of the inside-out regulation of beta2-integrins suggest that distinct mechanisms are involved in the beta2-integrin modulation induced by various chemoattractants.  相似文献   

9.
Binding of chemoattractants to receptors on human polymorphonuclear leukocytes (PMN) stimulates the phosphodiesteric cleavage of phosphatidylinositol 4,5-bisphosphate to produce inositol 1,4,5-trisphosphate and 1,2-diacylglycerols. To investigate the possible second messenger function of diacylglycerols in PMN activation, we tested the ability of a series of synthetic sn 1,2-diacylglycerols, known to stimulate protein kinase C in other systems, to promote superoxide anion release, oxygen consumption, lysosomal enzyme secretion, and chemotaxis. None of the diacylglycerols initiated the chemotactic migration of PMN. Several of the diacylglycerols however, were, active in stimulating superoxide anion release and lysozyme secretion, with dioctanoylglycerol (diC8) being the most potent. Unexpectedly, didecanoylglycerol (diC10) induced lysosomal enzyme secretion, but failed to stimulate superoxide production or oxygen consumption. All other biologically active diacylglycerols tested displayed similar EC50 for stimulating lysozyme secretion and superoxide production. The ability of the diacylglycerols to compete for phorbol dibutyrate (PDBu) binding in intact PMN suggested a mechanism for the divergent biological activity of diC10. Although the compounds that stimulated both superoxide production and lysosomal enzyme secretion competed for essentially all [3H]PDBu binding from its receptor, diC10, which only stimulated secretion, competed for 45% of the bound [3H]PDBu. Thus diacylglycerols can selectively activate certain functions of leukocyte chemoattractant receptor. The data suggest that a discrete pool of protein kinase C may mediate activation of the respiratory burst in PMN.  相似文献   

10.
11.
Lipid chemoattractants, such as platelet-activating factor and leukotriene B4, as well as the peptide chemoattractant FMLP, were found to stimulate [3H]phosphatidic acid ([3H]PA) formation in 1-O-[3H]octadecyl-lyso platelet-activating factor-labeled rabbit neutrophils. The stimulation of [3H]PA formation appears to result from the activation of phospholipase D (PLD), because in the presence of ethanol, chemoattractant stimulation produced [3H]phosphatidylethanol, the characteristic compound produced by PLD at the expense of [3H]PA formation. The PLD activation by all chemoattractants tested was primed by cytochalasin B and revealed a similar time dependence. However, lipid chemoattractants were less potent as compared with FMLP, and the maximal stimulation by the former was lower than that by the latter. From these results, it is concluded that the mechanism of PLD activation by lipid chemoattractants is similar to, but different from, that by FMLP. Cytochalasin B stimulated degranulation and [3H]PA formation in agonist-stimulated neutrophils, and their stimulations were well correlated. Ethanol inhibited both agonist-stimulated [3H]PA formation and degranulation in a concentration-dependent manner, but the inhibition in degranulation was much less than that in [3H]PA formation. These results suggest that PLD activation is involved in degranulation, but another signaling pathway may also be required for full stimulation of degranulation. When the radiolabeled neutrophils were stimulated by chemoattractants for 5 min, 1,2-[3H]diglyceride was found to accumulate. The accumulation was inhibited by either ethanol or the phosphatidate phosphohydrolase inhibitor propranolol, which indicates that PA produced by PLD can be converted to 1,2-diglyceride by phosphatidate phosphohydrolase. Under these conditions, propranolol did not inhibit degranulation stimulated by chemoattractants. These results indicate that PA produced by PLD is more important than its metabolite diglyceride for the degranulation of rabbit neutrophils.  相似文献   

12.
In human airway epithelial cells, sphingosine-1-phosphate (SPP) and lysophosphatidic acid (LPA) stimulated the production of phosphatidic acid (PA), which was inhibited by the primary alcohol butan-1-ol, but not by the inactive butan-2-ol, clearly indicating phospholipase D (PLD) involvement. Both SPP and LPA stimulated actin stress fibre formation, which was also butan-2-ol-insensitive and inhibited by butan-1-ol. SPP-induced PLD activation and cytoskeletal remodelling were insensitive to brefeldin A and toxin B from Clostridium difficile, which conversely blocked the effect of LPA, suggesting that the monomeric GTPases ADP ribosylation factor (ARF) and Rho are involved in LPA, but not in SPP responses. Pertussis toxin inhibited SPP- but not LPA-induced effects. PLD activation and stress fibre formation by both lysolipids were abolished by the tyrosine kinase inhibitor genistein. Addition of PA to cells caused a massive stress fibre assembly. In conclusion, PLD is one of the signalling components linking SPP-receptor activation to assembly of actin stress fibres.  相似文献   

13.
We have measured the activation of the small GTPase Ral in human neutrophils after stimulation with fMet-Leu-Phe (fMLP), platelet activating factor (PAF), and granulocyte macrophage-colony stimulating factor and compared it with the activation of two other small GTPases, Ras and Rap1. We found that fMLP and PAF, but not granulocyte macrophage-colony stimulating factor, induce Ral activation. All three stimuli induce the activation of both Ras and Rap1. Utilizing specific inhibitors we demonstrate that fMLP-induced Ral activation is mediated by pertussis toxin-sensitive G-proteins and partially by Src-like kinases, whereas fMLP-induced Ras activation is independent of Src-like kinases. PAF-induced Ral activation is mediated by pertussis toxin-insensitive proteins, Src-like kinases and phosphatidylinositol 3-kinase. Phosphatidylinositol 3-kinase is not involved in PAF-induced Ras activation. The calcium ionophore ionomycin activates Ral, but calcium depletion partially inhibits fMLP- and PAF-induced Ral activation, whereas Ras activation was not affected. In addition, 12-O-tetradecanoylphorbol-13-acetate-induced activation of Ral is completely abolished by inhibitors of protein kinase C, whereas 12-O-tetradecanoylphorbol-13-acetate-induced Ras activation is largely insensitive. We conclude that in neutrophils Ral activation is mediated by multiple pathways, and that fMLP and PAF induce Ral activation differently.  相似文献   

14.
The bridging of IgE receptors on rat basophilic leukemia cells (RBL-2H3) results in a number of biochemical events that accompany histamine secretion. Prominent among these is the release of arachidonic acid from cellular phospholipids, which could be due to the activation of phospholipase enzymes. In the present experiments we studied the intracellular activation of phospholipase A2 (PLA2) during histamine release. RBL-2H3 cells were stimulated through the IgE receptor, and the homogenates were prepared and tested for phospholipase A2 activity on 1-stearoyl-2-[14C]arachidonyl-sn-3-phosphatidylcholine. The amount of activity in the homogenates was dependent on the concentration of secretagogue used to activate the cells. Under optimal conditions there was a 1.86 +/- 0.12-fold (mean +/- SEM, N = 44) increase in the activity found in homogenates of stimulated cells. Activity was present in homogenates prepared 30 sec after cell activation, was optimal between 5 and 10 min, and decreased later. In time course experiments the PLA2 activation preceded histamine release. The activation of the enzyme in the cell occurred in the presence of 10 microM EGTA in the extracellular medium, which completely inhibited release of arachidonic acid and histamine. However, the activity of the enzyme required Ca2+. The PLA2 activity in the homogenates and the extent of cell stimulation for histamine release were maximal at the same concentration of antigen, and both were blocked by the addition of a monovalent hapten. The enzyme in the homogenates was capable of cleaving arachidonic acid from different phospholipids. The production of lysophospholipids could play a critical role in histamine release from cells. These results demonstrate the activation of PLA2 enzyme in cellular homogenates during the secretory process.  相似文献   

15.
We have studied the phospholipase A2 activity in fractionated human neutrophils, employing labeled phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine as exogenous substrates. We used these phospholipid substrates labeled in the sn-1 position and measured the resulting labeled lysophospholipid forms in order to ascertain the phospholipase A2 specificity. In postnuclear supernatants from resting and A23187-activated cells, the phospholipase A2 activity showed a similar pH dependence curve with two pH optima at 5.5 and 7.5. Extracts from activated cells showed a 3-6-fold increase in enzyme activity. The subcellular distribution of phospholipase A2 activity in resting and A23187-treated human neutrophils was investigated by fractionation of postnuclear supernatants on continuous sucrose gradients. The neutral phospholipase A2 behaved as a membrane-bound enzyme and was mainly localized in the plasma membrane, the azurophilic granule, and in an ill-defined region of the gradient between the specific granules and mitochondria. The phospholipase A2 located in this undefined region showed a higher degree of activation than that located in other subcellular particulates in A23187-treated cells. This specific activation of an intracellular phospholipase A2 activity during cell stimulation indicates that cell compartmentalization may play a role in the formation of cell-activating and/or signal-transducing agents through the generation of arachidonate metabolites. Phosphatidylinositol was a better substrate for the plasma membrane enzyme, whereas phosphatidylcholine and phosphatidylethanolamine behaved as better substrates for intracellular organelle phospholipase A2 activities. The phospholipase A2 with maximal activity at pH 5.5 behaved as a soluble enzyme, and was almost completely localized in the azurophilic granules. Upon cell activation this acid enzyme activity was released in a similar way to beta-glucuronidase, a marker of azurophilic granules. These results demonstrate the different molecular properties of the phospholipase A2 activity, on the basis of its cellular location.  相似文献   

16.
We have studied the effect of gamma-aminobutyric acid (GABA) and other GABA-receptor agonists (3-aminopropanesulphonic acid and muscimol) on the noradrenaline-induced stimulation of polyphosphoinositide metabolism in rat hippocampal slices. Formation of water-soluble inositol phosphates, and polyphosphoinositide metabolism were studied in hippocampal slices prelabelled with [3H]myoinositol. Noradrenaline induced formation of inositol mono-, bis- and trisphosphate during 10 min incubation in the presence of lithium; activation of phospholipase C by noradrenaline was also reflected by the hydrolysis of polyphosphoinositides and by the increased metabolism of phosphatidylinositol. GABA-receptor agonists were unable to activate per se phospholipase C; however, when added together with a low concentration of noradrenaline, they greatly potentiated the noradrenaline-stimulated polyphosphoinositide metabolism. We conclude that GABA-receptor agonists potentiate the effect of noradrenaline on polyphosphoinositide turnover and we discuss the role of this neurotransmitter interaction in the physiology of the hippocampus.  相似文献   

17.
18.
Fc gamma Rs mediate immune complex-induced tissue injury. The hypothesis that Fc gamma RIIa and Fc gamma RIIIb control neutrophil responses by activating mitogen-activated protein kinases was examined. Homotypic and heterotypic cross-linking of Fc gamma RIIa and/or Fc gamma RIIIb resulted in a rapid, transient increase in ERK and p38 activity, with maximal stimulation between 1 and 3 min. Fc gamma RIIa and Fc gamma RIIIb stimulated distinct patterns of ERK and p38 activity, and heterotypic cross-linking failed to stimulate synergistic activation of either ERK or p38 activity. Both Fc gamma RIIa and Fc gamma RIIIb required activation of a nonreceptor tyrosine kinase and phosphatidylinositol 3-kinase for stimulation of ERK and p38. Inhibition of ERK activation with PD98059 enhanced H2O2 production stimulated by homotypic and heterotypic Fc gamma R cross-linking. Inhibition of p38 with SB203580 attenuated H2O2 production stimulated by Fc gamma RIIIb or heterotypic cross-linking, but had no effect on Fc gamma RIIa-stimulated H2O2 production. On the other hand, PD98059 inhibited actin polymerization stimulated by Fc gamma R cross-linking, while SB203580 had no effect. Inhibition of actin polymerization with cytochalasin D enhanced p38 activity stimulated by either Fc gamma RIIa or Fc gamma RIIIb, but cytochalasin D only enhanced H2O2 production stimulated by Fc gamma RIIIb. Our data indicate that Fc gamma RIIa and Fc gamma RIIIb independently activate ERK and p38. The two receptors demonstrate different efficacies for ERK and p38 activation, and they do not act cooperatively. ERK and p38 provide stimulatory and inhibitory signals for neutrophil responses to immune complexes. In addition, these data indicate that actin reorganization may play a role in mediating p38-dependent activation of respiratory burst upon stimulation of Fc gamma RIIIb in neutrophils.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号