首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, tree hydraulic conductance (K tree) was experimentally manipulated to study effects on short-term regulation of stomatal conductance (g s), net photosynthesis (A) and bulk leaf water potential (Ψleaf) in well watered 5–6 years old and 1.2 m tall maritime pine seedlings (Pinus pinaster Ait.). K tree was decreased by notching the stem and increased by progressively excising the root system and stem. Gas exchange was measured in a chamber at constant irradiance, vapour pressure deficit, leaf temperature and ambient CO2 concentration. As expected, we found a strong and positive relationship between g s and K tree (r = 0.92, P = 0.0001) and between A and K tree (r = 0.9, P = 0.0001). In contrast, however, we found that the response of Ψleaf to K tree depended on the direction of change in K tree: increases in K tree caused Ψleaf to decrease from around −1.0 to −0.6 MPa, but reductions in K tree were accompanied by homeostasis in Ψleaf (at −1 MPa). Both of these observations could be explained by an adaptative feedback loop between g s and Ψleaf, with Ψleaf prevented from declining below the cavitation threshold by stomatal closure. Our results are consistent with the hypothesis that the observed stomatal responses were mediated by leaf water status, but they also suggest that the stomatal sensitivity to water status increased dramatically as Ψleaf approached −1 MPa.  相似文献   

2.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

3.
Summary The daily course of stomatal conductance and transpiration was monitored on each separate face of vertical phyllodes of various acacias. The selected phyllodes had a north-south orientation so that one side faced eastwards and the other westwards. The principal measurements were made on Acacia longifolia and A. melanoxylon in Portugal in late summer and autumn, and additional measurements were made on A. ligulata and A. melanoxylon in Australia. In Portugal, irrespective of soil moisture status, conductance showed on early morning maximum with a subsequent gradual decline and sometimes a subsidiary peak in the late afternoon. Maximum conductances appeared to be a function of soil moisture status, whereas the decline in conductance in the late morning and afternoon was correlated with changes in phyllode-to-air vapour pressure deficits rather than changes in phyllode water status. The relationship of transpiration to phyllode water potential did not appear to be influenced by soil moisture status, although transpiration was less in drier soils and in the afternoons, this latter factor contributing to a marked hysteresis in the relationship. The opposing faces of the phyllodes exhibited a high degree of synchrony, showing parallel stomatal opening and closing, despite their large differences in irradiance. Stomatal conductance tended to be higher on the eastern faces in the morning and lower in the afternoon. In A. longifolia the daily average of relative conductance was much the same for both faces, but in A. melanoxylon that of the eastern face was higher and was retained even when the normal orientation of the phyllodes was reversed by turning them through 180°. Synchrony must be achieved by the stomata of both sides responding to common environmental or endogenous signals which are perceived by both surfaces with equal sensitivity.  相似文献   

4.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

5.
Summary Young potted ash-trees,Fraxinus excelsior L. were differentially salinized with NaCl and then treated with a nutrient solution. Due to the application of NaCl, higher leaf water potentials and increased stomatal diffusive resistances were recorded. Simultaneously with a drop of the stomatal diffusive resistance in midsummer, leaf necrosis began to spread rapidly. This stomatal behaviour could not be observed in those trees treated with the nutrient solution whose protective effect probably results herein.  相似文献   

6.
We studied the water relations of 6 shrub and 3 tree species typical of the mediterranean climate region of central Spain to identify differential responses to water stress between and within species, and to determine if free proline concentration in leaves could be used as a water stress indicator. Predawn and midday water potentials (w) on a seasonal basis, relative water content (RWC), leaf mass per area, foliar nitrogen and free proline concentrations were measured. The lowest water potentials were observed at the end of the summer, with recovery to higher water potentials in the fall and winter seasons. Species differed regarding the annual w fluctuation. Thymus zygis, Halimium viscosum, Genista hirsuta and Juniperus oxycedrus exhibited the most negative midday and predawn w (both less than -6 MPa) with a large magnitude of response to changing conditions in soil moisture of the upper horizon of the soil. Lavandula pedunculata and Cistus ladanifer showed a moderate response. Quercus rotundifolia, Quercus faginea and Retama sphaerocarpa showed a modest response. The w of different size individuals of Quercus rotundifolia and Cistus ladanifer were compared. The annual w fluctuation was greater in small individuals as compared to large individuals. In every species, there was an increase in proline concentration of bulk leaf tissues when predawn w dropped below -5 MPa. Small plants of Cistus ladanifer reached lower water potentials and also higher concentration of proline than bigger plants. Proline could possibly be used as a drought stress indicator in every species except Q. rotundifolia. It is suggested that in addition to water stress avoidance due to deep root systems, some mechanisms of water stress tolerance may operate among shrub and tree species of central Spain.  相似文献   

7.
以车桑子生殖枝为材料,通过野外调查、取样以及各器官生物量的测定,研究金沙江干热河谷地区车桑子不同性别植株生殖枝生物量分配特征。结果表明:(1)金沙江干热河谷地区车桑子种群雄∶雌性别比为0.11,极显著的偏离1∶1(P<0.001),种群偏雌性。(2)车桑子生殖枝的形态特征和生物量分配特征均具有显著的性别差异;雌性植株生殖枝花朵生物量和总生物量显著高于雄性和两性植株(P <0.05),而后两者之间无显著差异;生殖枝生殖分配具有显著的性别差异(P <0.05),但生殖枝叶生物量无性别差异。(3)生殖枝生物量大小与花朵生物量、营养生物量均呈极显著正相关关系(P <0.001)。营养生物量与花朵生物量之间为显著正相关关系(P <0.01),生殖分配与生殖枝大小无相关关系。研究认为,车桑子生殖枝营养生长与生殖生长不具有权衡关系,且生殖分配不具有个体大小依赖性,特定生物量分配模式可能是对金沙江干热河谷区资源利用、环境适应的一种特殊形态模式。  相似文献   

8.
王雪梅  闫帮国  史亮涛  刘刚才 《生态学报》2020,40(21):7767-7776
水分是干热河谷植物生长过程中最主要的限制因子,种植密度增加也会引起植物生长的资源限制,两者交互作用下植物生长性状及种内关系的变化特征还不清楚。以干热河谷优势植物——车桑子为研究对象,根据元谋干热河谷年均生长季降雨量设置3种水分梯度:高水分、中水分和低水分,同时在各水分梯度下设置4个种植密度:1、2、4、9株/盆,探究水分、种植密度及其交互作用对车桑子生长性状、生物量分配及种内相互作用的影响。结果表明:(1)低水分条件下,车桑子生长和水分生理受到抑制,但车桑子在较低的叶水势下依然能够保持较高的相对含水量;(2)干旱胁迫显著降低了车桑子总生物量和单株生物量,显著增加了枯叶生物量比例,低水分和中水分条件下,增加种植密度对总生物无显著影响;而高水分条件下,增加种植密度显著提高了车桑子总生物量;(3)低水分显著增加了茎、叶生物量的异速生长指数,将更多生物量分配到叶,而种植密度增加显著降低了茎、叶生物量的异速生长指数,增加了茎的生物量分配;(4)通过相对邻体效应的计算,各处理条件下,车桑子种内关系均表现为竞争作用,并且,这种竞争作用的强度随水分的减少和密度的增加而增加。在高密度条件下(9棵/盆),...  相似文献   

9.
为明确车桑子(Dodonaea viscosa)造林对北盘江喀斯特地区乡土植物物种多样性的影响,该研究采用群落样地调查法对不同车桑子覆盖度(0、20%、40%、60%、80%、100%)下的植物群落进行实地调查,并对其植物群落的物种多样性进行了对比分析。结果表明:(1)随车桑子覆盖度的增加,群落物种数及高位芽物种数有所下降,留下的物种多为地面芽、隐芽和一年生的草本植物。(2)随车桑子覆盖度的增加,Margalef指数、Simpson指数、Shan-non-Wiener指数及Pielou指数均呈下降趋势,群落中植物的种类和数量均减少,群落结构趋于简单,稳定性降低。(3)随车桑子覆盖度的增加,群落的物种组成不断发生替换,且草本植物的物种替代率均大于木本植物,但群落中物种间替代率呈先降低后升高的趋势,相邻两覆盖度之间的物种相似性系数呈先增加后减小的趋势。研究认为,当车桑子覆盖度≥60%后,乡土植物物种丰富度、多样性相对较低,物种分配不均匀,群落结构变简单,稳定性较差,不利于群落向更高级的演替阶段发展。  相似文献   

10.
Ludwig F  Jewitt RA  Donovan LA 《Oecologia》2006,148(2):219-225
Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (~0.07 mol m−2 s−1) and E (~1.5 mol m−2 s−1). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.  相似文献   

11.
The estuarine isopod Cyathura carinata is a second intermediate host to microphallid trematodes, which use mud snails Hydrobia spp. and shorebirds as respectively first intermediate and final hosts. To identify processes responsible for infection patterns observed in C. carinata, a short-term microcosm experiment was conducted with both macroinvertebrates and one of their common parasites – Maritrema subdolum. Fine sand collected from two different shallow water sites was used to test if sediment type could affect infection rates. After 7 days at 25 °C, C. carinata from the substratum with the highest proportion of particles <125 m were more surface active and obtained significantly more M. subdolum individuals than isopods from the other sediment type. No parasite-induced effects on the hosts were found during this short-term experiment. The distribution pattern of microphallid cysts and mesocercariae inside the isopods revealed that M. subdolum cercariae primarily penetrated through the pleopods and afterwards located themselves in the middle-posterior region of the hosts body. Even if it was not possible to identify the factor responsible for the observed infection patterns (cercariae production and/or host behaviour), the results of this experiment indicate that small-scale factors, such as differences in substratum and associated features, may have considerable impact on infections of host populations.  相似文献   

12.
Castrillo  M.  Fernandez  D.  Calcagno  A.M.  Trujillo  I.  Guenni  L. 《Photosynthetica》2001,39(2):221-226
We compared responses of maize, tomato, and bean plants to water stress. Maize reached a severe water deficit (leaf water potential –1.90 MPa) in a longer period of time as compared with tomato and bean plants. Maize stomatal conductance (g s) decreased at mild water deficit. g s of tomato and bean decreased gradually and did not reach values as low as in maize. The protein content was maintained in maize and decreased at low water potential (w); in tomato it fluctuated and also decreased at low w; in bean it gradually decreased. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity remained high at mild and moderate stress in maize and tomato plants; in bean it remained high only at mild stress.  相似文献   

13.
 Predawn leaf water potential, stomatal conductance and microclimatic variables were measured on 13 sampling days from November 1995 through August 1996 to determine how environmental and physiological factors affect water use at the canopy scale in a plantation of mature clonal Eucalyptus grandis Hill ex-Maiden hybrids in the State of Espirito Santo, Brazil. The simple ”big leaf” Penman-Monteith model was used to estimate canopy transpiration. During the study period the predawn leaf water potential varied from –0.4 to –1.3 MPa, with the minimum values observed in the winter months (June and August 1996), while the average estimated values for canopy conductance and canopy transpiration fell from 17.3 to 5.8 mm s–1 and from 0.54 to 0.18 mm h–1, respectively. On the basis of all measurements, the average value of the decoupling coefficient was 0.25. During continuous soil water shortage a proportional reduction was observed in predawn leaf water potential and in daily maximum values of stomatal conductance, canopy transpiration and decoupling coefficient. The results showed that water vapour exchange in this canopy is strongly dominated by the regional vapour pressure deficit and that canopy transpiration is controlled mainly by stomatal conductance. On a seasonal basis, stomatal conductance and canopy transpiration were mainly related to predawn leaf water potential and, thus, to soil moisture and rainfall. Good results were obtained with a multiplicative empirical model that uses values of photosynthetically active radiation, vapour pressure deficit and predawn leaf water potential to estimate stomatal conductance. Received: 10 June 1998 / Accepted: 20 July 1998  相似文献   

14.
The goatfishes (Mullidae) include about 50 bottom-foraging fish species. The foraging activity of the yellow goatfish, Mulloidichthys martinicus, and the spotted goatfish, Pseudupeneus maculatus, was studied comparatively at Fernando de Noronha Archipelago, off coast of Northeast Brazil tropical West Atlantic. Pseudupeneus maculatus fed over a larger variety of substrate types, had lower feeding rate, roamed more per given time, spent less time in a feeding event, and displayed a more diverse repertoire of feeding modes than M. martinicus. The differences in the foraging activity and behaviour between the two species possibly minimize a potential resource overlap, as already recorded for other sympatric mullids. Pseudupeneus maculatus had lower feeding rate most likely because it feeds on larger items, and roamed over greater distance per time. Possibly this is because it foraged over a greater variety of substrate distributed over a larger area than that used by M. martinicus. Notwithstanding the overall morphological and behavioural similarity of goatfishes in general, they do differ in their substrate preferences and foraging activity, which indicates that these fishes should not be simply considered generalized bottom foragers.  相似文献   

15.
D. D. Ackerly 《Oecologia》1992,89(4):596-600
Summary Tropical vines in the Araceae family commonly exhibit alternating periods of upward and downward growth, decoupling the usual relationship between decreasing light environment with increasing age among the leaves on a shoot. In this study I examined patterns of light, leaf specific mass, and leaf nitrogen concentration in relation to leaf position, a measure of developmental age, in field collected shoots of Syngonium podophyllum. These data were analyzed to test the hypothesis that nitrogen allocation parallels within-shoot gradients of light availability, regardless of the relationship between light and leaf age. I found that leaf nitrogen concentration, on a mass basis, was weakly correlated with leaf level light environment. However, leaf specific mass, and consequently nitrogen per unit leaf area, were positively correlated with gradients of light within the shoot, and either increased or decreased with leaf age, providing support for the hypothesis that nitrogen allocation parallels gradients of light availability.  相似文献   

16.
The objective of the study was to compare the water relations of two indigenous [Podocarpus falcatus (Thunb.) Endl., Croton macrostachys Hochst. ex. Del.] and two exotic tree species (Eucalyptus globulus Labille., Cupressus lusitanica Miller) growing in the same location in the montane Munessa State Forest, southern Ethiopia. Stem flow was measured with Granier type thermal dissipation probes. Sap flux, normalized per unit sapwood area, and the total sapwood areas of the particular trees were used to estimate daily transpiration. Maximum daily transpiration values (60 kg water) were recorded for Croton when at full foliage. After shedding most of its leaves in the dry season transpiration was reduced to 8 kg per day. Eucalyptus had the next highest transpiration (55 kg), in this case at the peak of the dry season. It transpired 4–5 times more than Podocarpus and Cupressus trees of similar size. Maximum stem flux density was tree-size dependent only in Croton. Diurnal patterns of stem flux indicated that Croton, Eucalyptus and Podocarpus, in contrast to Cupressus, responded more directly to light than to atmospheric water pressure deficit. At high VPD (>1.0 kPa) stem flux reached a plateau in Croton and Podocarpus indicating stomatal limitation. Per unit leaf area Croton had the highest and Podocarpus and Cupressus the lowest daily transpiration rates. In summary, the pioneer tree Croton had the lowest and Podocarpus the highest water use efficiency. The contribution of the study to the understanding of the role of each tree species in the hydrology of the natural forest and the plantations is discussed.  相似文献   

17.
Summary A method for determining the mass flow rate of xylem water in thin stems under natural field conditions is presented. Diurnal courses of xylem water flow and stomatal conductance of the vines Entadopsis polystachya, Cyclanthera multifoliolata, and Serjania brachycarpa were examined in a tropical deciduous forest on the west coast of Mexico. E. polystachya (leaf area 23.6 m2) had a maximum water flow rate of 6.50 kg h-1 or 1.44 kg cm-2 stem basal area h-1; daily water use was 2.00 kg m-2 leaf area day-1. S. brachycarpa (leaf area 4.5 m2) and C. multifoliolata (leaf area 3.6 m2) had a maximum water flow rate of 0.72 and 0.19 kg h-1 or 0.63 and 0.92 kg cm-2 stem basal area h-1. Daily water use was 1.26 and 0.39 kg m-2 leaf area day-1, respectively. The daily courses of xylem water flow were strongly influenced by the orientation of the leaf area to irradiance and its intensity. While leaves of E. polystachya had a constant high stomatal conductance during the day, S. brachycarpa had a maximum stomatal opening in the morning followed by continuous closure during the rest of the day. In contrast to the woody species, the herbaceous C. multifoliolata exhibited a strong midday depression of stomatal conductance and wilting of its leaves. The leaf biomass accounted for 8% (Entadopsis), 16% (Serjania), and 23% (Cyclanthera) of above-ground biomass. The relation of sapwood area to leaf area supplied (Huber value) was 0.19 (Entadopsis), 0.18 (Serjania), and 0.06 (Cyclanthera) cm2 m-2  相似文献   

18.
Leaf diffusive conductance for water (gl) and twig xylem pressure (xt) was measured in juvenile silver birch, Betula pendula, under field conditions in southern Sweden. Data from one site were used to parameterise two different multiplicative models for gl (dependent data), and measurements from another site were used to validate these models (independent data). In addition, experiments were performed in controlled environments to validate the gl response functions used in the models. The driving variables in the D-model were photosynthetic photon flux density, air temperature and water vapour pressure deficit of the air (Da), while the DH-model also included the accumulated hours after sunrise each day with Da above a certain threshold (H). Both models satisfactorily predicted the variation in gl in dependent as well as in independent data, and the gl response functions used were supported by the experiments in controlled environments. The DH-model was more successful in predicting gl than the D-model by accounting for the observation that gl was lower at higher H under similar weather conditions. There was a considerable variation in maximum gl during the season, as well as between the two sites. On relatively warm and dry days xt rapidly declined during the morning and then stabilized around a constant value until the late afternoon, with the stomatal regulation effectively preventing xt from decreasing below this value. We suggest that these models could be used to simulate the gl in juvenile birch if maximum gl is locally estimated and if the response functions are not extrapolated beyond the climate range for this study.  相似文献   

19.
Summary The most widely used technique of leaf water potential measurements is with the Scholander pressure chamber. Representative leaf water potential values require many determinations on individual leaves and this can be time consuming in large fields or experiments with multiple treatments. This paper describes a method of obtaining a mean value more rapidly, by using two leaves in the pressure chamber at the same time, but recording the end point of each leaf separately.  相似文献   

20.

Background and Aims

Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status.

Methods

Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming.

Key results

In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility.

Conclusions

Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号