首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim was to compare kinematic data from an experimental foot model comprising four segments ((i) heel, (ii) navicular/cuboid (iii) medial forefoot, (iv) lateral forefoot), to the kinematics of the individual bones comprising each segment. The foot model was represented using two different marker attachment protocols: (a) markers attached directly to the skin; (b) markers attached to rigid plates mounted on the skin. Bone data were collected for the tibia, talus, calcaneus, navicular, cuboid, medial cuneiform and first and fifth metatarsals (n=6). Based on the mean differences between the three data sets during stance, the differences between any two of the three kinematic protocols (i.e. bone vs skin, bone vs plate, skin vs plate) were >3 degrees in only 35% of the data and >5 degrees in only 3.5% of the data. However, the maximum difference between any two of the three protocols during stance was >3 degrees in 100% of the data, >5 degrees in 73% of the data and >8 degrees in 23% of the data. Differences were greatest for motion of the combined navicular/cuboid relative to the calcaneus and the medial forefoot segment relative to the navicular/cuboid. The differences between the data from the skin and plate protocols were consistently smaller than differences between either protocol and the kinematic data for each bone comprising the segment. The pattern of differences between skin and plate protocols and the actual bone motion showed no systematic pattern. It is unlikely that one rigid body foot model and marker attachment approach is always preferable over another.  相似文献   

2.
Magnetic resonance imaging offers unique insights into three-dimensional foot bone motion. Thereby, adequate devices enabling defined loading and positioning of the foot are needed to profit from this noninvasive procedure. Tarsal bone positions of three healthy subjects were repeatedly measured in a pronated and a supinated foot excursion under bodyweight with a newly developed MR imaging procedure. The quantification of the transferred motion from the loading and positioning device to the calcaneus and an estimation of the required degrees to distinguish between tarsal joint rotations were used to evaluate the applicability of the procedure to investigate tarsal joint motion. It was found that 45-70% (75-95%) of the externally applied 15 deg foot pronation (supination) were transferred to the calcaneus. Furthermore, the talonavicular joint showed the largest amount of rotation up to 20 deg eversion-inversion and abadduction, followed by the subtalar joint showing nearly half of that motion. Considerably less motion was found between the cuboid and calcaneus (about 2-6 deg) and the cuboid nearly did not rotate relative to the navicular (on average 1 deg). The estimated necessary differences between tarsal joint movements to identify individual kinematic behavior were in the order of 2 deg (4 deg related to the talonavicular joint). Since the results were in agreement with the literature, it is concluded that the applicability of the presented procedure to investigate tarsal bone mechanics is warranted. The possibility to evaluate 3D tarsal joint motion in combination with bone morphology (e.g., joint curvature) may provide new insights in the still uncertain relationship between foot function and foot morphology.  相似文献   

3.
There is a dearth of information on navicular, cuboid, cuneiform and metatarsal kinematics during walking and our objective was to study the kinematic contributions these bones might make to foot function. A dynamic cadaver model of walking was used to apply forces to cadaver feet and mobilise them in a manner similar to in vivo. Kinematic data were recorded from 13 cadaver feet. Given limitations to the simulation, the data describe what the cadaver feet were capable of in response to the forces applied, rather than exactly how they performed in vivo. The talonavicular joint was more mobile than the calcaneocuboid joint. The range of motion between cuneiforms and navicular was similar to that between talus and navicular. Metatarsals four and five were more mobile relative to the cuboid than metatarsals one, two and three relative to the cuneiforms. This work has confirmed the complexity of rear, mid and forefoot kinematics. The data demonstrate the potential for often-ignored foot joints to contribute significantly to the overall kinematic function of the foot. Previous emphasis on the ankle and sub talar joints as the principal articulating components of the foot has neglected more distal articulations. The results also demonstrate the extent to which the rigid segment assumptions of previous foot kinematics research have over simplified the foot.  相似文献   

4.
Musculoskeletal models used in gait analysis require coordinate systems to be identified for the body segments of interest. It is not obvious how hindfoot (or rearfoot) axes defined by skin-mounted markers relate to the anatomy of the underlying bones. The aim of this study was to compare the marker-based axes of the hindfoot in a multi-segment foot model to the orientations of the talus and calcaneus as characterized by their principal axes of inertia. Twenty adult females with no known foot deformities had radio-opaque markers placed on their feet and ankles at the foot model marker locations. CT images of the feet were acquired as the participants lay supine with their feet in a semi-weight bearing posture. The spatial coordinates of the markers were obtained from the images and used to define the foot model axes. Segmented masks of the tali and calcanei were used to create 3D bone models, from which the principal axes of the bones were obtained. The orientations of the principal axes were either within the range of typical values reported in the imaging literature or differed in ways that could be explained by variations in how the angles were defined. The model hindfoot axis orientations relative to the principal axes of the bones had little bias but were highly variable. Consideration of coronal plane hindfoot alignment as measured clinically and radiographically suggested that the model hindfoot coordinate system represents the posterior calcaneal tuberosity, rather than the calcaneus as a whole.  相似文献   

5.
6.
Patients with calcaneus fractures experience considerable interferences with daily living activities. The quality of anatomical reconstruction is important because of its influence on functional outcome. The aim of this study was to develop an automatic algorithm based on computer tomographic (CT) images to quantify the integrity of calcaneal joint surfaces. Validation of this algorithm was done by assessing intra-individual variations of characteristic joint parameters. Bilateral hind foot CT data of 12 subjects were manually segmented, and 3D models from the calcaneus, talus and cuboid were generated. These models were implemented in a custom-made software to analyse the area, 3D orientations and bone distance of the joint surfaces of the calcaneus. Three joints were detected, and the calculated parameters were compared between right and left hind foot by the evaluation of the directional asymmetry (%DA). The results were statistically analysed with a paired t-test. The median of area (5–7 %DA) of the joint surfaces and the distance between two articulating surfaces (8–9 %DA) showed the greatest intra-individual differences. Median differences in 3D orientation were comparatively low (1–2 %DA). None of these differences was statistically significant. Inter-individual variations among subjects were several magnitudes larger than intra-individual differences. The presented computational tool provides 3D joint-specific parameters of the calcaneus, which enable to describe their respective joint integrity. The results show that only small intra-individual differences within the anatomy exist. Surgical treatment should take place with the aid of CT data from the contralateral side. Thus, a good restoration of the anatomy may be reached. The computational tool assesses the quality of reduction, and may be helpful to evaluate the outcome and quality of operative treatment based on the calculated joint-specific parameters of joint reconstructions in the hind foot.  相似文献   

7.
Subject-specific finite element modelling is a powerful tool for carrying out controlled investigations of the effects of geometric and material property differences on performance and injury risk. Unfortunately, the creation of suitable meshes for these models is a challenging and time-intensive task. This paper presents an automated method of generating fully hexahedral meshes of the bones of the feet which requires only surface representations as inputs. The method is outlined and example meshes, using two human feet and the foot of a Japanese macaque, are given to demonstrate its flexibility. Mesh quality is also evaluated for the calcaneus, first metatarsal, navicular and talus. Streamlining the generation of finite element meshes of the foot will ease investigations into the patient-specific biomechanics of injury.  相似文献   

8.
Kinematic data from rigid segment foot models inevitably includes errors because the bones within each segment move relative to each other. This study sought to define error in foot kinematic data due to violation of the rigid segment assumption. The research compared kinematic data from 17 different mid and forefoot rigid segment models to kinematic data of the individual bones comprising these segments. Kinematic data from a previous dynamic cadaver model study was used to derive individual bone as well as foot segment kinematics.Mean and maximum errors due to violation of the rigid body assumption varied greatly between models. The model with least error was the combination of navicular and cuboid (mean errors <=1.3°, average maximum error <=2.4°). Greatest error was seen for the model combining all the ten bones (mean errors <=4.4°, average maximum errors <=6.9°). Based on the errors reported a three segment mid and forefoot model is proposed: (1) Navicular and cuboid, (2) cuneiforms and metatarsals 1, 2 and 3, and (3) metatarsals 4 and 5. However the utility of this model will depend on the precise purpose of the in vivo foot kinematics research study being undertaken.  相似文献   

9.
The objective of the current study was to use fluoroscopy to accurately determine the three-dimensional (3D), in vivo, weight-bearing kinematics of 10 normal and five anterior cruciate ligament deficient (ACLD) knees. Patient-specific bone models were derived from computed tomography (CT) data. 3D computer bone models of each subject's femur, tibia, and fibula were recreated from the CT 3D bone density data. Using a model-based 3D-to-2D imaging technique registered CT images were precisely fit onto fluoroscopic images, the full six degrees of freedom motion of the bones was measured from the images. The computer-generated 3D models of each subject's femur and tibia were precisely registered to the 2D digital fluoroscopic images using an optimization algorithm that automatically adjusts the pose of the model at various flexion/extension angles. Each subject performed a weight-bearing deep knee bend while under dynamic fluoroscopic surveillance. All 10 normal knees experienced posterior femoral translation of the lateral condyle and minimal change in position of the medial condyle with progressive knee flexion. The average amount of posterior femoral translation of the lateral condyle was 21.07 mm, whereas the average medial condyle translation was 1.94 mm, in the posterior direction. In contrast, all five ACLD knees experienced considerable change in the position of the medial condyle. The average amount of posterior femoral translation of the lateral condyle was 17.00 mm, while the medial condyle translation was 4.65 mm, in the posterior direction. In addition, the helical axis of motion was determined between maximum flexion and extension. A considerable difference was found between the center of rotation locations of the normal and ACLD subjects, with ACLD subjects exhibiting substantially higher variance in kinematic patterns.  相似文献   

10.
A method for measuring three-dimensional kinematics that incorporates the direct cross-registration of experimental kinematics with anatomic geometry from Computed Tomography (CT) data has been developed. Plexiglas registration blocks were attached to the bones of interest and the specimen was CT scanned. Computer models of the bone surface were developed from the CT image data. Determination of discrete kinematics was accomplished by digitizing three pre-selected contiguous surfaces of each registration block using a three-dimensional point digitization system. Cross-registration of bone surface models from the CT data was accomplished by identifying the registration block surfaces within the CT images. Kinematics measured during a biomechanical experiment were applied to the computer models of the bone surface. The overall accuracy of the method was shown to be at or below the accuracy of the digitization system used. For this experimental application, the accuracy was better than +/-0.1mm for position and 0.1 degrees for orientation for linkage digitization and better than +/-0.2mm and +/-0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones were measured for simulated forearm rotation. Screw-displacement axis analysis showed 0.1mm (proximal) translation of the radius (with respect to the ulna) from supination to neutral (85.2 degrees rotation) and 1.4mm (proximal) translation from neutral to pronation (65.3 degrees rotation). The motion of the radius with respect to the ulna was displayed using the surface models. This methodology is a useful tool for the measurement and application of rigid-body kinematics to computer models.  相似文献   

11.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

12.
Clinically, different foot arch heights are associated with different tissue injuries to the foot. To investigate the possible factors contributing to the difference in foot arch heights, previous studies have mostly measured foot pressure in either low-arched or high-arched feet. However, little information exists on stress variation inside the foot with different arch heights. Therefore, this study aimed to implement the finite element (FE) method to analyse the influence of different foot arches. This study established a 3D foot FE model using software ANSYS 11.0. After validating the FE model, this study created low-arched, high-arched and normal-arched foot FE models. The FE analysis found that both the stress and strain on the plantar fascia and metatarsal were higher in the high-arched foot, whereas the stress and strain on the calcaneous, navicular and cuboid were higher in low-arched foot. Additionally, forefoot pressure was increased with an increase in arch height.  相似文献   

13.
For measuring the in-vivo range of motion of the hindfoot, a CT-based bone contour registration method (CT-BCM) was developed to determine the three-dimensional position and orientation of bones. To validate this technique, we hypothesized that the range of motion in the hindfoot is equally, accurately measured by roentgen stereophotogrammetric analysis (RSA) as by the CT-BCM technique.Tantalum bone markers were placed in the distal tibia, talus and calcaneus of one cadaver specimen. With a fixed lower leg, the cadaveric foot was held in neutral and subsequently loaded in eight extreme positions. Immediately after acquiring a CT-scan with the foot in a position, RSA radiographs were made. Bone contour registration and RSA was performed. Helical axis parameters were calculated for talocrural and subtalar joint motion from neutral to extreme positions and between opposite extreme positions. Differences between CT-BCM and RSA were calculated.Compared with RSA, the CT-BCM data registered an overall root mean square difference (RMSd) of 0.21° for rotation about the helical axis, and 0.20 mm translation along the helical axis for the talocrural and subtalar joint and for all motions combined. The RMSd of the position and direction of the helical axes was 3.3 mm and 2.4°, respectively. The latter errors were larger with smaller helical rotations.The differences are similar to those reported for validated RSA and thus are not clinically relevant. Concluding, CT-BCM is an accurate and accessible alternative for studying joint motion, as it does not have the risk of infection and overlapping bone markers.  相似文献   

14.
Understanding in vivo subtalar joint kinematics is important for evaluation of subtalar joint instability, the design of a subtalar prosthesis and for analysing surgical procedures of the ankle and hindfoot. No accurate data are available on the normal range of subtalar joint motion. The purpose of this study was to introduce a method that enables the quantification of the extremes of the range of motion of the subtalar joint in a loaded state using multidetector computed tomography (CT) imaging. In 20 subjects, an external load was applied to a footplate and forced the otherwise unconstrained foot in eight extreme positions. These extreme positions were foot dorsiflexion, plantarflexion, eversion, inversion and four extreme positions in between the before mentioned positions. CT images were acquired in a neutral foot position and each extreme position separately. After bone segmentation and contour matching of the CT data sets, the helical axes were determined for the motion of the calcaneus relative to the talus between four pairs of opposite extreme foot positions. The helical axis was represented in a coordinate system based on the geometric principal axes of the subjects’ talus. The greatest relative motion between the calcaneus and the talus was calculated for foot motion from extreme eversion to extreme inversion (mean rotation about the helical axis of 37.3±5.9°, mean translation of 2.3±1.1 mm). A consistent pattern of range of subtalar joint motion was found for motion of the foot with a considerable eversion and inversion component.  相似文献   

15.
There are many methods used to represent joint kinematics (e.g., roll, pitch, and yaw angles; instantaneous center of rotation; kinematic center; helical axis). Often in biomechanics internal landmarks are inferred from external landmarks. This study represents mandibular kinematics using a non-orthogonal floating axis joint coordinate system based on 3-D geometric models with parameters that are "clinician friendly" and mathematically rigorous. Kinematics data for two controls were acquired from passive fiducial markers attached to a custom dental clutch. The geometric models were constructed from MRI data. The superior point along the arc of the long axis of the condyle was used to define the coordinate axes. The kinematic data and geometric models were registered through fiducial markers visible during both protocols. The mean absolute maxima across the subjects for sagittal rotation, coronal rotation, axial rotation, medial-lateral translation, anterior-posterior translation, and inferior-superior translation were 34.10 degrees, 1.82 degrees, 1.14 degrees, 2.31, 21.07, and 6.95 mm, respectively. All the parameters, except for one subject's axial rotation, were reproducible across two motion recording sessions. There was a linear correlation between sagittal rotation and translation, the dominant motion plane, with approximately 1.5 degrees of rotation per millimeter of translation. The novel approach of combining the floating axis system with geometric models succinctly described mandibular kinematics with reproducible and clinician friendly parameters.  相似文献   

16.
This study investigated whether points digitized for the purpose of embedding coordinate systems into the foot accurately represented the orientation of the bone described. Eight complete data sets were collected from 9 adult cadaver specimens. Palpable landmarks defined 5 segments to include the calcaneus, navicular, medial cuneiform, first metatarsal, and hallux. With use of the Flock of Birds electromagnetic motion tracking device, a single examiner digitized a minimum of 3 points for each segment. Coordinate definitions followed the right-hand rule, with left-sided data converted to right-sided equivalency. Local axes were created where X projected approximately forward, Y upward, and Z laterally. Matrix transformation computations calculated the angular precision in degrees between coordinates built from points digitized pre- and post-dissection of surface tissues covering bone. The condition of post-dissection was considered the criterion standard for comparison. Change about the X-axis represented the angular precision of the coordinate in the frontal anatomical plane; Y-axis in the transverse plane; Z-axis in the sagittal plane. The calcaneus and navicular coordinate axes changed by an average of <3° across conditions. Mean coordinate angulation of the cuneiform X, Y, Z axes changed by 6.0°, 4.6°, 11.9°, respectively. Change in coordinate angulation was largest for the X-axis at the first metatarsal (48.6°) and hallux (36.5°). A two-way repeated measures ANOVA found a significant interaction between the axis and segment (F=8.87, P=0.00). Tukey post-hoc comparisons indicated the change in coordinate angulation at the X-axis for the cuneiform, metatarsal, and hallux to be significantly different (P <0.05) from the calcaneus and navicular. The X-axis of the first metatarsal and hallux was different from all other axis-segment combinations except for the Z-axis of the cuneiform. Differences in locating landmarks reduced angular precision of the coordinate axes most in the smallest foot segments where points digitized were located close together. We can recommend the proposed landmarks for the calcaneus and navicular segments, but kinematics determined about the coordinate axes for the small sized medial cuneiform, and the long (X) axis for the first metatarsal and hallux have excessive error.  相似文献   

17.
Information on the internal stresses/strains in the human foot and the pressure distribution at the plantar support interface under loading is useful in enhancing knowledge on the biomechanics of the ankle-foot complex. While techniques for plantar pressure measurements are well established, direct measurement of the internal stresses/strains is difficult. A three-dimensional (3D) finite element model of the human foot and ankle was developed using the actual geometry of the foot skeleton and soft tissues, which were obtained from 3D reconstruction of MR images. Except the phalanges that were fused, the interaction among the metatarsals, cuneiforms, cuboid, navicular, talus, calcaneus, tibia and fibula were defined as contact surfaces, which allow relative articulating movement. The plantar fascia and 72 major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The encapsulated soft tissue was defined as hyperelastic, while the bony and ligamentous structures were assumed to be linearly elastic. The effects of soft tissue stiffening on the stress distribution of the plantar surface and bony structures during balanced standing were investigated. Increases of soft tissue stiffness from 2 and up to 5 times the normal values were used to approximate the pathologically stiffened tissue behaviour with increasing stages of diabetic neuropathy. The results showed that a five-fold increase in soft tissue stiffness led to about 35% and 33% increase in the peak plantar pressure at the forefoot and rearfoot regions, respectively. This corresponded to about 47% decrease in the total contact area between the plantar foot and the horizontal support surface. Peak bone stress was found at the third metatarsal in all calculated cases with a minimal increase of about 7% with soft tissue stiffening.  相似文献   

18.
The foot consists of many small bones with complicated joints that guide and limit motion. A variety of invasive and noninvasive means [mechanical, X-ray stereophotogrammetry, electromagnetic sensors, retro-reflective motion analysis, computer tomography (CT), and magnetic resonance imaging (MRI)] have been used to quantify foot bone motion. In the current study we used a foot plate with an electromagnetic sensor to determine an individual subject's foot end range of motion (ROM) from maximum plantar flexion, internal rotation, and inversion to maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation. We then used a custom built MRI-compatible device to hold each subject's foot during scanning in eight unique positions determined from the end ROM data. The scan data were processed using software that allowed the bones to be segmented with the foot in the neutral position and the bones in the other seven positions to be registered to their base positions with minimal user intervention. Bone to bone motion was quantified using finite helical axes (FHA). FHA for the talocrural, talocalcaneal, and talonavicular joints compared well to published studies, which used a variety of technologies and input motions. This study describes a method for quantifying foot bone motion from maximum plantar flexion, inversion, and internal rotation to maximum dorsiflexion, eversion, and external rotation with relatively little user processing time.  相似文献   

19.
A suite of measurements was collected from the talus, calcaneus, navicular, and cuboid of humans from Southern China, Victorian Britain, Roman Britain, and Zulu tribes people from the Republic of South Africa. Univariate and multivariate statistical analyses of dimensions of individual foot bones revealed subtle but distinct patterns of morphological discrimination on the basis of sex and size on the one hand, and geographical relationships on the other. These differences are largely expressed in the first three canonical variates of the multivariate analyses: the first axis expresses both sex and size differences, and the second and third, geographical group differences. Confirmation of morphological patterns obtained from individual multivariate analyses was provided by an integrated analysis of the four tarsal elements together. However, the integrated analysis also gave larger separations with discriminations along different axes. Thus the three geographical groups (Zulus, Southern Chinese, and the two British groups together) were separated by first and third variates. The discrimination of sex and size differences was found in the second axis, mirroring what was found in the first axes of the individual studies. This axis reversal implies that in examining all bones together, there is enough redundant information about sex and size in each individual bone that they are relegated to a second axis. It likewise implies that the data referring to geographic discriminations provided by each individual bone are not redundant; they sum in the integrated analysis, and therefore contribute to the overall analysis to a greater extent, with increased clarity.  相似文献   

20.
Primates use a range of locomotor modes during which they incorporate various foot postures. Humans are unique compared with other primates in that humans lack a mobile fore‐ and midfoot. Rigidity in the human foot is often attributed to increased propulsive and stability requirements during bipedalism. Conversely, fore‐ and midfoot mobility in nonhuman primates facilitates locomotion in arboreal settings. Here, we evaluated apparent density (AD) in the subchondral bone of human, ape, and monkey calcanei exhibiting different types of foot loading. We used computed tomography osteoabsorptiometry and maximum intensity projection (MIP) maps to visualize AD in subchondral bone at the cuboid articular surface of calcanei. MIPs represent 3D volumes (of subchondral bone) condensed into 2D images by extracting AD maxima from columns of voxels comprising the volumes. False‐color maps are assigned to MIPs by binning pixels in the 2D images according to brightness values. We compared quantities and distributions of AD pixels in the highest bin to test predictions relating AD patterns to habitual locomotor modes and foot posture categories of humans and several nonhuman primates. Nonhuman primates exhibit dorsally positioned high AD concentrations, where maximum compressive loading between the calcaneus and cuboid likely occurs during “midtarsal break” of support. Humans exhibit less widespread areas of high AD, which could reflect reduced fore‐ and midfoot mobility. Analysis of the internal morphology of the tarsus, such as subchondral bone AD, potentially offers new insights for evaluating primate foot function during locomotion. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号