首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock factor 1 (HSF1) mediates the cellular response to stress to increase the production of heat shock protein (HSP) chaperones for proper protein folding, trafficking, and degradation; failure of this homeostatic mechanism likely contributes to neurodegeneration. We show that the neuroprotective drug riluzole increased the amount of HSF1 in NG108-15 neuroprogenitor cells by slowing the specific turnover of HSF1 and supporting a more robust and sustained activation of HSF1. Using Hsp70-luciferase as a functional readout of the activity of HSF1, we show that riluzole amplified the heat shock induction of the reporter gene with an optimal increase at 1 μM. Immunocytochemical staining and Western blot quantitation of HSP70 in NG108-15 neuroprogenitor cells and embryonic spinal cord neurons provided corroborative evidence that riluzole amplified the HSF1-dependent regulation of HSP70 expression. Parallel studies on the GLT1 glutamate transporter showed that riluzole increased GLT1-reporter and GLT1 protein expression and that the increase was enhanced by heat shock and coincident with the increased expression of HSP70 and HSP90. This result is consistent with the anti-glutamatergic profile of riluzole and the presence of multiple heat shock elements on the GLT1 gene promoter, suggesting that riluzole may modulate GLT1 expression through HSF1. The increased HSP chaperones and GLT1 transporter blunted glutamate-induced and N-methyl D-aspartate receptor-mediated excitotoxic death. In summary, we show that riluzole increased the amount and activity of HSF1 to boost the expression of HSPs and GLT1 for neuroprotection under stress.  相似文献   

2.
3.
4.
5.
Activation of heat shock factor (HSF) 1-DNA binding and inducible heat shock protein (hsp) 70 (also called hsp72) expression enables cells to resist various forms of stress and survive. Fas, a membrane-bound protein, is a central proapoptotic factor; its activation leads to a cascade of events, resulting in programmed cell death. These two mechanisms with contradictory functions, promoting either cell survival or death, were examined for their potential to inhibit each other's activation. Induction of FAS-mediated signaling was followed by a rapid decrease in HSF1-DNA binding and inducible hsp70 expression. Inhibition of HSF1-DNA binding was demonstrated to be based on absent hyperphosphorylation of HSF1 during FAS signaling. These effects of FAS activation on the HSF1/hsp70 stress response were blocked by ICE (caspase 1) inhibitors, suggesting an ICE-mediated process. Furthermore, inhibition of HSF1/hsp70 was accompanied by an increase in apoptosis rates from 20% to 50% in response to heat stress. When analyzing the effects of HSF1/hsp70 activation on Fas-mediated apoptosis, protection from apoptosis was seen in cells with induced hsp70 protein levels, but not in cells that were just induced for HSF1-DNA binding. Thus, we conclude that inhibition of HSF1/hsp70 stress response during Fas-mediated apoptosis and vice versa may facilitate a cell to pass a previously chosen pathway, stress resistance or apoptosis, without the influence of inhibitory signals.  相似文献   

6.
7.
The expression of heat shock proteins (HSPs) is known to be increased via activation of heat shock factor 1 (HSF1), and excess expression of HSPs exerts feedback inhibition of HSF1. However, the molecular mechanism to modulate such relationships between HSPs and HSF1 is not clear. In the present study, we show that stable transfection of either Hsp25 or inducible Hsp70 (Hsp70i) increased expression of endogenous HSPs such as HSP25 and HSP70i through HSF1 activation. However, these phenomena were abolished when the dominant negative Hsf1 mutant was transfected to HSP25 or HSP70i overexpressed cells. Moreover, the increased HSF1 activity by either HSP25 or HSP70i was found to result from dephosphorylation of HSF1 on serine 307 that increased the stability of HSF1. Either HSP25 or HSP70i inhibited ERK1/2 phosphorylation because of increased MKP1 phosphorylation by direct interaction of these HSPs with MKP1. Treatment of HOS and NCI-H358 cells, which showed high expressions of endogenous HSF1, with small interfering RNA (siRNA) of either HSP27 (siHSP27)or HSP70i (siHSP70i) inhibited both HSP27 and HSP70i proteins; this was because of increased ERK1/2 phosphorylation and serine phosphorylation of HSF1. The results, therefore, suggested that when the HSF1 protein level was high in cancer cells, excess expression of HSP27 or HSP70i strongly facilitates the expression of HSP proteins through HSF1 activation, resulting in severe radio- or chemoresistance.  相似文献   

8.
9.
Inflammatory bowel disease (IBD) involves infiltration of leukocytes into intestinal tissue, resulting in intestinal damage induced by reactive oxygen species (ROS). Pro-inflammatory cytokines and cell adhesion molecules (CAMs) play important roles in this infiltration of leukocytes. The roles of heat shock factor 1 (HSF1) and heat shock proteins (HSPs) in the development of IBD are unclear. In this study, we examined the roles of HSF1 and HSPs in an animal model of IBD, dextran sulfate sodium (DSS)-induced colitis. The colitis worsened or was ameliorated in HSF1-null mice or transgenic mice expressing HSP70 (or HSF1), respectively. Administration of DSS up-regulated the expression of HSP70 in colonic tissues in an HSF1-dependent manner. Expression of pro-inflammatory cytokines and CAMs and the level of cell death observed in colonic tissues were increased or decreased in DSS-treated HSF1-null mice or transgenic mice expressing HSP70, respectively, relative to control wild-type mice. Relative to macrophages from control wild-type mice, macrophages prepared from HSF1-null mice or transgenic mice expressing HSP70 displayed enhanced or reduced activity, respectively, for the generation of pro-inflammatory cytokines in response to lipopolysaccharide stimulation. Suppression of HSF1 or HSP70 expression in vitro stimulated lipopolysaccharide-induced up-regulation of CAMs or ROS-induced cell death, respectively. This study provides the first genetic evidence that HSF1 and HSP70 play a role in protecting against DSS-induced colitis. Furthermore, this protective role seems to involve various mechanisms, such as suppression of expression of pro-inflammatory cytokines and CAMs and ROS-induced cell death.  相似文献   

10.
11.
12.
13.
14.
15.
Effects of inhibitors of the heat shock protein 90 (HSP90) chaperone activity and inhibitors of the heat shock protein (HSP) expression on sensitivity of HeLa tumor cells to hyperthermia were studied. It was found that nanomolar concentrations of inhibitors of the HSP90 activity (17AAG or radicicol) slowed down the chaperone-dependent reactivation of a thermolabile reporter (luciferase) in heat-stressed HeLa cells and slightly enhanced their death following the incubation for 60 min at 43°C. The inhibitors of HSP90 activity stimulated de novo induction of additional chaperones (HSP70 and HSP27) that significantly increased intracellular HSP levels. Treatment of the cells with 17AAG or radicicol along with an inhibitor of the HSP induction (e.g. quercetin or triptolide, or NZ28) completely prevented the increase in the intracellular chaperone levels resulting from the inhibition of HSP90 activity and subsequent heating. Combination of all three treatments (inhibition of the HSP90 activity + inhibition of the HSP induction + heating at 43°C for 60 min) resulted in more potent inhibition of the reporter reactivation and a sharp (2–3-fold) increase in cell death. Such enhancement of the cytotoxicity may be attributed to the “chaperone deficiency” when prior to heat stress both the functional activity of constitutive HSP90 and the expression of additional (inducible) chaperones are blocked in the cells.  相似文献   

16.
The exposure of human fibroblasts (HF) aging in vitro to heat shock resulted in an attenuated expression of the heat shock-inducible HSP70. When late passage cells were cultured in the continuous presence of serum, we observed a reduced accumulation of the cytoplasmic polyadenylated HSP70 mRNA. The levels of HSF1 activation and nuclear HSP70 mRNA were comparable to those of early passage cells (M. A. Bonelli et al., Exp. Cell Res. 252, 20-32, 1999). When late passage cells were serum-starved overnight, we observed a reduced activation of HSF1 and a decreased level of HSP70 mRNA during heat shock. However, at 37 degrees C the levels of HSF1 differed little between late passage HF and early passage cells, irrespective of the presence of serum. Interestingly, during heat shock a marked decrease in the level and, consequently, in the binding activity of HSF1 was noted only in serum-starved, late passage HF. The decrease in the level of HSF1 was counteracted by back addition of serum to the cells during heat shock. Addition of the specific proteasome inhibitor MG132 blocked a decrease in HSF1 during heat shock, maintaining levels observed in late passage cells and HSF1 activity comparable to that of early passage HF. The recovery of the level and activity of HSF1 observed in late passage HF incubated in the presence of MG132 suggests that heat shock unmasks a latent proteasome activity responsible for HSF1 degradation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号