首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We had shown that adult animals, whose mothers were submitted to protein or energy restriction during lactation, differ from controls in their body weight and thyroid function. The aim of this study was to evaluate, from birth through six months of age, leptin serum concentration, body weight and food intake in animals whose mothers received protein or energy restricted-diet during lactation as follows: control (C)-23% protein; protein-restricted (PR)-8% protein; energy-restricted (ER)-23% protein, in restricted quantity, according to the mean ingestion of the PR group. After weaning (day 21) all pups had free access the control diet. Body weight of pups from PR mothers were always lower than those from controls (p < 0.05), while body weight of pups from ER mothers surpassed that of the C group significantly at 140 days of age. The food intake was lower in both offspring from PR and ER mothers, normalizing on the 32th day in pups from ER mothers and on the 52th day in pups from PR mothers. Leptin serum concentration in both offspring from PR and ER mothers were significantly decreased on the 12th day (p < 0.05) and increased on the 21st day (p < 0.05) compared to control. After weaning there was no differences among the groups. It is possible that changes in leptin concentration during lactation in the offspring of malnourished groups could permanently modify the setpoint for body weight control.  相似文献   

2.
Diets with restricted energy or protein during lactation programs body weight in the adult offspring. We have investigated the hypothesis that protein or energy-restricted diets during lactation alter the feeding response to peripheral leptin treatment of the adult offspring. Five Wistar rats were randomly assigned to one of the following groups on the day that the offspring were born: C, control diet with 23% protein; PR, protein restricted diet with 8% protein; and ER, energy-restricted, receiving the control diet in restricted quantities, which were calculated according to the mean ingestion of the PR group. After weaning (day 21), two animals from each litter (10 pups in each group) were randomly selected and placed together in the cage with free access to water and standard diet until 150 days of age, when they were tested for its response to either leptin (0.5 mg/kg body wt ip) for groups Clep, PRlep and ERlep or saline vehicle for groups Csal, PRsal and ERsal on food intake. In the control groups, food intake was reduced two hours (36%), four hours (41%) and six hours (25%) after leptin treatment. In contrast, no response was observed to leptin treatment in the PRlep and ERlep groups, suggesting leptin resistance. We demonstrated the development of resistance to the anorectic leptin effect and its program in a critical life period associated to nutritional and hormonal factors.  相似文献   

3.
4.
The aim of this study was to evaluate the effects of hyperleptinemia during the first ten days of life on thyroid function in adulthood. After birth, pups were separated into two groups: L8 - receiving daily injections of recombinant mouse leptin (8 microg/100 g body weight, sc) and control (C) - receiving the same volume of saline. Both groups were treated for the first 10 days of lactation. The animals were sacrificed at 150 days of age, and the blood was collected for leptin, TSH, total triiodothyronine (TT 3 ) and total thyroxin (TT 4 ) serum concentration determinations by radioimmunoassay. The thyroid gland was excised to determine thyroid iodine uptake. Leptin, TT 3 and TT 4 serum concentrations in L8 group were significantly (108 %, 47 % and 32 %; p < 0.05) higher than that of controls. There was no significant difference between the groups related to thyroid iodine uptake and TSH serum concentration. These data suggest that the first half of lactation period is important in determining thyroid function in adulthood, and that it can be programmed by serum leptin concentration.  相似文献   

5.
6.
M P Heyes  E S Garnett  G Coates 《Life sciences》1988,42(16):1537-1542
Exercise capacity is influenced by both increases and decreases in central dopaminergic activity. To investigate the effects of exercise stress on intracerebral dopamine metabolism, rats were run on a motor driven treadmill at 37 m/min for varying times up to exhaustion at 19.6 +/- 0.6 min. Dopamine, DOPAC, and HVA concentrations in striatum, brain stem, and hypothalamus increased towards exhaustion. 5-HIAA concentrations increased in striatum whereas norepinephrine concentrations decreased in hypothalamus. The results indicate that delayed increases in dopaminergic activity occurs during exercise. These, and other observations indicate that central dopaminergic activity modulates exercise performance.  相似文献   

7.
The effects of protein-calorie malnutrition (PCM) on heart structure and function are not completely understood. We studied heart morphometric, functional, and biochemical characteristics in undernourished young Wistar rats. They were submitted to PCM from birth (undernourished group, UG). After 10 wk, left ventricle function was studied using a Langendorff preparation. The results were compared with age-matched rats fed ad libitum (control group, CG). The UG rats achieved 47% of the body weight and 44% of the left ventricular weight (LVW) of the CG. LVW-to-ventricular volume ratio was smaller and myocardial hydroxyproline concentration was higher in the UG. Left ventricular systolic function was not affected by the PCM protocol. The myocardial stiffness constant was greater in the UG, whereas the end-diastolic pressure-volume relationship was not altered. In conclusion, the heart is not spared from the adverse effects of PCM. There is a geometric alteration in the left ventricle with preserved ventricular compliance despite the increased passive myocardial stiffness. The systolic function is preserved.  相似文献   

8.
This study aims to determine the effects of maternal protein and energy malnutrition during lactation on the linear growth, body weight and onset of puberty of the female offspring. At parturition, dams were randomly assigned to the following groups: (C) control group, with free access to a standard laboratory diet containing 23% protein; (PR) protein-restricted group, with free access to an isoenergy and protein-restricted diet containing 8% protein; and (ER) energy-restricted group, receiving standard laboratory diet in restricted quantities. After weaning, the female pups had free access to standard laboratory diet. From day 30 onwards, the pups were inspected daily for vaginal opening. Cyclic stages of the ovaries were studied by daily vaginal smears after vaginal opening until day 40 when all animals were sacrificed with pentobarbital. From day 4 after birth until day 40, body weight and linear growth in the PR and ER rats were significantly lower than in controls (p < 0.001). In spite of the significant (p<0.05) delayed in the vaginal opening in PR and ER rats, the first estrous cycle occurred at the same time of vaginal opening in all groups. The PR and ER rats exhibited a lower uterine (PR = 42%, ER = 40%, p < 0.001) and ovarian (PR = 26%, ER=19%, p < 0.05) absolute weight and uterus relative weight (PR = 27%, ER = 22%, p < 0.05). Our data showed that maternal protein and energy malnutrition during lactation leads to growth retardation and delayed on the onset of puberty in female pups, with vaginal opening and estrous cycle occurring at the same time.  相似文献   

9.
10.
Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV). By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059) through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.  相似文献   

11.
Methionine transsulfuration in plasma and liver, and plasma methionine and cysteine kinetics were investigated in vivo during the acute phase of sepsis in rats. Rats were infected with an intravenous injection of live Escherichia coli, and control pair-fed rats were injected with saline. Two days after injection, the rats were infused for 6 h with [(35)S]methionine and [(15)N]cysteine. Transsulfuration was measured from the transfer rate of (35)S from methionine to cysteine. Liver cystathionase activity was also measured. Infection significantly increased (P < 0.05) the contribution of transsulfuration to cysteine flux in both plasma and liver (by 80%) and the contribution of transsulfuration to plasma methionine flux (by 133%). Transsulfuration measured in plasma was significantly (P < 0.05) higher in infected rats than in pair-fed rats (0.68 and 0.25 micromol. h(-1). 100 g(-1), respectively). However, liver cystathionase specific activity was decreased by 17% by infection (P < 0.05). Infection increased methionine flux (16%, P < 0.05) less than cysteine flux (38%, P < 0.05). Therefore, the plasma cysteine flux was higher than that predicted from estimates of protein turnover based on methionine data, probably because of enhanced glutathione turnover. Taken together, these results suggest an increased cysteine requirement in infection.  相似文献   

12.
The renal function of rats whose mothers had hypoprolactinemia at the end of lactation was evaluated during development. Lactating Wistar rats were treated with bromocriptine (BRO, 1?mg twice a day, s.c.) or saline on days 19, 20, and 21 of lactation, and their male offspring were followed from weaning until 180 days old. 1 rat from each of the 12 litters/group was evaluated at 2 time points (90 and 180 days). Body and kidney weights, sodium, potassium, and creatinine were measured. Values were considered significant when p<0.05. Adult BRO-treated offspring presented higher body weight (+10%), lower relative renal weight at 90 and 180 days (-9.2% and -15.7%, respectively), glomerulosclerosis, and peritubular fibrosis. At 90 and 180 days, creatinine clearance was lower (-32% and -30%, respectively), whereas serum potassium was higher (+19% and +29%, respectively), but there were no changes in serum sodium. At 180 days, higher proteinuria (+36%) and serum creatinine levels (+20%) were detected. Our data suggest that prolactin inhibition during late lactation programs renal function damage in adult offspring that develops gradually, first affecting the creatinine clearance and potassium serum levels with further development of hyperproteinuria and higher serum creatinine, without affecting sodium. Thus, precocious weaning programs some components of the metabolic syndrome, which can be a risk factor for further development of kidney disease.  相似文献   

13.
Pulmonary surfactant is a lipid-protein material that is essential for normal lung function. Maintaining normal and consistent alveolar amounts of surfactant is in part dependent on clearance of surfactant by alveolar macrophages (AM). The present study utilized a rat model of AM depletion to determine the impact on surfactant pool sizes and function over time. Male Sprague-Dawley rats were anesthetized and intratracheally instilled with PBS-liposomes (PBS-L) or dichloromethylene diphosphonic acid (DMDP) containing liposomes (DMDP-L) and were killed at various time points up to 21 days for compliance measurements, AM cell counts, and surfactant analysis. AM numbers were significantly decreased 1, 2, and 3 days after instillation in DMDP-L vs. PBS-L, with 72% depletion at 3 days. AM numbers returned to normal levels by 5 days. In DMDP-L rats, there was a rapid increase in surfactant-phospholipid pools, showing a ninefold increase in the amount of surfactant in the lavage 3 days after liposome instillation. Surfactant accumulation progressed up to 7 days, with pools normalizing by 21 days. The increase in surfactant was due to increases in both subfractions of surfactant, the large aggregates (LA) and small aggregates. Surfactant protein A levels, relative to LA phospholipids, were not increased. There was a decreased extent of surfactant conversion in vitro for LA from DMDP-L rats compared with controls. It is concluded that the procedure of AM depletion significantly affects surfactant metabolism. The increased endogenous surfactant must be considered when utilizing the AM depletion model to study the role of these cells during lung insults.  相似文献   

14.
We evaluated the effects of protein malnutrition on liver morphology and physiology in rats subjected to different malnutrition schemes. Pregnant rats were fed with a control diet or a low protein diet (LPD). Male offspring rats received a LPD during gestation, lactation, and until they were 60 days old (MM group), a late LPD that began after weaning (CM), or a LPD administrated only during the gestation-lactation period followed by a control diet (MC). On day 60, blood was collected and the liver was dissected out. We found a decrease in MM rats’ total body (p < 0.001) and liver (p < 0.05) weight. These and CM rats showed obvious liver dysfunction reflected by the increase in serum glutamic pyruvic transaminase (SGOT) (MM p < 0.001) and serum glutamic pyruvic transaminase (SGPT) (MM and CM p < 0.001) enzymes, and liver content of cholesterol (MM and CM p < 0.001) and triglycerides (MM p < 0.01; CM p < 0.001), in addition to what we saw by histology. Liver dysfunction was also shown by the increase in gamma glutamyl transferase (GGT) (MM, MC, and CM p < 0.001) and GST-pi1 (MM and CM p < 0.001, MC p < 0.05) expression levels. MC rats showed the lowest increment in GST-pi1 expression (MC vs. MM; p < 0.001, MC vs. CM; p < 0.01). ROS production (MM, CM, and MC: p < 0.001), lipid peroxidation (MM, CM, and MC p < 0.001), content of carbonyl groups in liver proteins (MM and CM p < 0.001, MC p < 0.01), and total antioxidant capacity (MM, CM, and MC p < 0.001) were increased in the liver of all groups of malnourished animals. However, MM rats showed the highest increment. We found higher TNF-α (MM and CM p < 0.001), and IL-6 (MM and CM p < 0.001) serum levels and TGF-β liver content (MM p < 0.01; CM p < 0.05), in MM and CM groups, while MC rats reverted the values to normal levels. Pro-survival signaling pathways mediated by tyrosine or serine/threonine kinases (pAKT) (MM and CM p < 0.001; MC p < 0.01) and extrasellular signal-regulated kinase (pERKs) (MM p < 0.01; CM p < 0.05) appeared to be activated in the liver of all groups of malnourished rats, suggesting the presence of cells resistant to apoptosis which would become cancerous. In conclusion, a LPD induced liver damage whose magnitude was related to the developmental stage at which malnutrition occurs and to its length.  相似文献   

15.
Short and long term effects of malnutrition on the small intestine, applied to the rat in uterus and lactation, have been studied. Malnutrition was induced by feeding the pregnant rats on 14 g daily during pregnancy and 21 g during lactation. In the pups (0, 15, 30, 90 and 150 days old), body weight and wet and dry weight and length of small intestine were measured. At 2.5-3 months of age, food transformation efficiency was studied, at 3 and 5 months of age in vivo intestinal absorption of D-glucose (11 mM) was measured. The results indicate a significant decrease in intestinal morphometric parameters in malnourished animals from birth to the age of 5 months. At the age of 3 months both food transformation efficiency and in vivo absorption of glucose were significantly higher in early undernourished animals, whereas at 5 months, glucose absorption was significantly higher in control. It can thus be concluded that early malnutrition altered the small intestine development and functionality and that total recovery did not occur after 4 months on a normal diet.  相似文献   

16.
Protein malnutrition during neonatal programs for a lower body weight and hyperthyroidism in the adult offspring were analyzed. Liver deiodinase is increased in such animals, contributing to the high serum triiodothyronine (T3) levels. The level of deiodinase activities in other tissues is unknown. We analyzed the effect of maternal protein restriction during lactation on thyroid, skeletal muscle, and pituitary deiodinase activities in the adult offspring. For pituitary evaluation, we studied the in vitro, thyrotropin-releasing hormone (TRH)-stimulated thyroid-stimulating hormone (TSH) secretion. Lactating Wistar rats and their pups were divided into a control (C) group, fed a normal diet (23% protein), and a protein-restricted (PR) group, fed a diet containing 8% protein. At weaning, pups in both groups were fed a normal diet until 180 days old. The pituitary gland was incubated before and after TRH stimulation, and released TSH was measured by radioimmunoassay. Deiodinase activities (D1 and D2) were determined by release of (125)I from [(125)I]reverse triiodothyronine (rT3). Maternal protein malnutrition during lactation programs the adult offspring for lower muscle D2 (-43%, P<0.05) and higher muscle D1 (+83%, P<0.05) activities without changes in thyroidal deiodinase activities, higher pituitary D2 activity (1.5 times, P<0.05), and lower TSH response to in vitro TRH (-56%, P<0.05). The evaluations showed that the lower in vivo TSH detected in adult PR hyperthyroid offspring, programmed by neonatal undernutrition, may be caused by an increment of pituitary deiodination. As described for liver, higher skeletal muscle D1 activity suggests a hyperthyroid status. Our data broaden the knowledge about the adaptive changes to malnutrition during lactation and reinforce the concept of neonatal programming of the thyroid function.  相似文献   

17.
On comparing germ-free and conventional rats, inactivation of the tryptic activity was found to take place in the caecum of conventional adult rats only. A microbial intestinal inactivation of the tryptic activity was established in suckling conventional rats within 10 days after birth. At 3 weeks of age, suckling germ-free rats were found to have less faecal tryptic activity than their early-weaned littermates.  相似文献   

18.
Heart mitochondria in rats submitted to chronic hypoxia.   总被引:1,自引:0,他引:1  
The effect of prolonged exposure to normobaric hypoxia on the mitochondria of myocard of rats exposed for several weeks to 8 and 7% O2 has been morphometrically evaluated. Twelve male Wistar rats housed in Nalgene cages (2 per cage) with a batch of six cages placed in plexiglass chambers were maintained in air/N2 mixtures containing different concentrations of O2. Six animals kept in similar cages under normoxia served as controls. When at day 60 the FIO2 was reduced to 8%, the weight increase stagnated and after the 81st test day, on which the hypoxic animals were subdivided into 8% and 7% groups the weight curve showed a decrease in the mean body weight for both groups. The arrest and the following loss of weight beyond the 85th day may be interpreted as the expression of a limit reached in the compensation capacity. In the 8%-group the shape of the mitochondria varied more markedly often with budding and furrowing of the surface. In the 7%-group bizarre shapes and wide variations in size with a decided shift towards larger mitochondria were noteworthy. While rats kept under 8% oxygen exhibited a numerical increase in myocardial mitochondria compared to controls, the mitochondria of the 7%-group were numerically reduced. The results suggest that hypoxia of 8% oxygen is compensatable, if only to some extent, by an increasing surface of mitochondrial membranes, and that further reduction of oxygen causes compensation mechanisms to fail as seen by the severe alterations of the mitochondrial population of the cardiomyocyte in the 7%-group.  相似文献   

19.
20.
Rats, when injected with endotoxin, begin to exhale nitric oxide (NO) within 1 h. This study measured the diffusing capacity for NO in the lungs of rats (DL(NO)) under both control and endotoxemic conditions, and it also estimated the rate at which endogenous NO (VP(NO)) enters the distal compartment of the lung, both in control rats and during endotoxemia. DL(NO) increased from 0.68 +/- 0.12 (SE) ml. min(-1). mmHg(-1) in control rats to 1.17 +/- 0.25 ml. min(-1). mmHg(-1) in endotoxemic rats. VP(NO) was 2.6 +/- 0.5 nl/min in control rats and attained a value of 218.6 +/- 50.1 nl/min at the height of NO exhalation 3 h after the endotoxin. We suggest that increased DL(NO) reflects an increase in pulmonary membrane diffusing capacity, caused by a pulmonary hypertension that is due to neutrophil aggregation in the lung capillaries. DL(NO) may also be increased by an enlarged pulmonary capillary volume because of the vasodilatory effects of the endogenous NO that is produced by the lung in response to the endotoxin. NO production by the lungs in response to endotoxin is unique in that it is the only situation reported to date in which pathologically induced increases in NO exhalation originate from the alveolar compartment of the lung, as opposed to the small conducting airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号