首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrocortisone stimulated glycosaminoglycan (GAG) synthesis, a characteristic of the cartilage phenotype, of rabbit costal chondrocytes in confluent quiescent culture, as judged by the incorporations of [35S]sulfate and [3H]glucosamine. Hydrocortisone also stimulated incorporation of [3H]serine into proteoglycan. The stimulation of GAG synthesis by hydrocortisone was dose-dependent and maximal at a physiological concentration of 10(-7) M. Hydrocortisone also stimulated GAG synthesis in cultures in the log-phase of growth. In this case, its maximal effect was observed at a concentration of 10(-6) M. The magnitude of the increase of GAG synthesis in response to hydrocortisone was larger in confluent culture than in log-phase cultures. Hydrocortisone stimulated DNA synthesis dose-dependently, and its effect was observable at a physiological concentration. However, no stimulation of DNA synthesis by hydrocortisone was observed in serum-free medium, in contrast to that of GAG synthesis. Hydrocortisone also increased protein synthesis and the cell number. Dexamethasone also stimulated the syntheses of both GAG and DNA. These results show that glucocorticoids stimulated both the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. Moreover, the effect of glucocorticoids was primarily on the differentiated phenotype of chondrocytes and its effect on proliferation was permissive.  相似文献   

2.
The factors required for the active proliferation of low-density rabbit costal chondrocytes exposed to 9:1 (v/v) mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium have been defined. Low-density primary cultures of rabbit costal chondrocytes proliferated actively when the medium was supplemented with high-density lipoprotein (300 micrograms/ml), transferrin (60 micrograms/ml), fibroblast growth factor (FGF) (1 ng/ml), hydrocortisone (10(-6) M), and epidermal growth factor (EGF) (30 ng/ml). Insulin, although it slightly decreased the final cell density, was required for reexpression of the cartilage phenotype at confluence. Optimal proliferation of low-density chondrocyte cultures was only observed when dishes were coated with an extracellular matrix (ECM) produced by cultured corneal endothelial cells, but not on plastic. Furthermore, serum-free chondrocyte cultures seeded at low density and maintained on ECM-coated dishes gave rise to a homogeneous cartilage-like tissue composed of spherical cells. These chondrocytes therefore seem to provide a good experimental system for analyzing factors involved in supporting proliferation of chondrocytes and their phenotypic expression.  相似文献   

3.
Pleiotrophin (PTN) is a secreted heparin-binding, developmentally regulated protein that is found in abundance in fetal, but not mature, cartilage. SDS-page and glycosaminoglycan (GAG) analysis of sulfate-radiolabeled proteoglycans isolated from the medium of mature cultured chondrocytes treated with PTN showed a threefold increase in the levels of proteoglycan synthesis. In contrast, in cultures of fetal chondrocytes, no changes in proteoglycan synthesis were observed. Thymidine incorporation experiments showed a dose-dependent decrease in proliferation of treated cells compared with control cultures, suggesting that pleiotrophin had an inhibitory effect on growth of chondrocytes. Neither FGF or heparin reversed the inhibitory effect of PTN. Capillary electrophoresis of chondroitinase ABC-digested proteoglycans isolated from mature chondrocytes showed 2-4-fold increases in the amounts of the 4S- and 6S-substituted GAG chains for the PTN-treated chondrocytes. Northern analysis showed a twofold upregulation in the mRNA levels of biglycan and collagen type II, but no difference in the message levels for decorin and aggrecan. These results establish that PTN inhibits cell proliferation, while stimulating the synthesis of proteoglycans in mature chondrocytes in vitro, suggesting that PTN may act directly or indirectly to regulate growth and proteoglycan synthesis in the developing matrix of fetal cartilage.  相似文献   

4.
Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.  相似文献   

5.
Clinical observations have suggested a relationship between osteoarthritis and a changed estrogen metabolism in menopausal women. Phytoestrogens have been shown to ameliorate various menopausal symptoms. Proteoglycans (PG) consisting of low and high sulfated glycosaminoglycans (GAG) are the main components of articular cartilage matrix, and their synthesis is increased by insulin in growth plate cartilage. We have investigated whether GAG synthesis and sodium [35S]sulfate incorporation in female bovine articular chondrocytes are affected by daidzein, genistein, and/or insulin. For comparative purposes, estradiol incubations were performed. Articular chondrocytes were cultured in monolayers at 5% O2 and 5% CO2 in medium containing serum for 7 days followed by the addition of 10(-11) M-10(-4) M daidzein, genistein, 17beta-estradiol, or 5 microg/ml insulin in a serum-free culture phase of 2 days. Photometrically analyzed GAG synthesis was significantly suppressed by high doses (10(-5) M-10(-4) M) of daidzein, genistein, and 17beta-estradiol. Although insulin raised the sodium [35S]sulfate uptake significantly, different concentrations of daidzein, genistein, or 17beta-estradiol showed no significant effects. However, the stimulating effect of insulin on sulfate incorporation was enhanced significantly after preincubation of cells with 10(-11) M-10(-5) M daidzein or 10(-9) M-10(-5) M genistein but not by 17beta-estradiol. In view of the risks of long-term estrogen replacement therapy, further experiments should clarify the potential benefit of phytoestrogens and insulin in articular cartilage metabolism.  相似文献   

6.
The effects of hyaluronic acid (HA) derivative on the proliferation and metabolism of human chondrocytes were examined. Cells were obtained from cartilage from metatarsal phalangeal joints of 20 adult humans (aged 22-63) and from femoral knee condyles of 10 subjects (aged 22-77). Chondrocytes isolated by collagenase/Dnase digestion were cultured with addition of different doses of HA for 4 weeks. Morphological studies demonstrated that HA enhanced the adhesion of cells to substrate; HA-treated chondrocytes proliferated better than chondrocytes cultured in HA-free medium. This study shows that HA improves in vitro substrate adhesion ability and proliferative activity of human cartilage cells and that the response to the treatment varies on an individual basis.  相似文献   

7.
Rapid clonal growth of primary cultures of human costal chondrocytes in a defined medium has been achieved. The basal nutrient medium used for such growth is MCDB 104. It is prepared without linoleic acid and supplemented with 1 microgram/ml insulin, 100 ng/ml fibroblast growth factor, 1.0 x 10(-7) M dexamethasone, and 5 micrograms/ml mixed lipids, presented to the cells in the form of liposomes. The lipid supplement contains soybean lecithin, cholesterol, sphingomyelin, vitamin E, and vitamin E acetate. No expression of cartilage-like differentiation occurs in the defined medium. However, colonies grown for several days in the defined medium and then grown for an additional period of time in medium F12 supplemented with fetal bovine serum and chicken embryo extract synthesize large amounts of refractile matrix that is stained intensely by acidified alcian green, thus demonstrating that the cells growing in the defined medium are capable of expressing cartilage matrix in a permissive environment. Good clonal growth and expression of differentiation can also be obtained by inoculating primary cultures of human chondrocytes directly into the F12-serum-embryo extract medium.  相似文献   

8.
Parathyroid hormone (PTH) receptors on cultured rabbit costal chondrocytes were demonstrated using HPLC-purified, radioiodinated [Nle8,-Nle18, Tyr34] bovine PTH-(1-34)amide. PTH binding was found to be specific for PTH agonists and antagonists and dependent on the time and temperature of incubation. Both growth cartilage (GC) cells and resting cartilage (RC) cells were shown to have a single class of saturable, high affinity PTH binding sites with a dissociation constant of 0.6-0.7 nM. However, the numbers of receptors per cell were approximately 49,000 on GC cells and 19,000 on RC cells. After crosslinking the receptors on these cells with the radioligand, one, major 125I-labeled band of 76 kDa was separated by SDS-PAGE.  相似文献   

9.
The effect of a physiological dose of vitamin C (100 mug/ml) on goat articular cartilage chondrocytes cultured in an alginate matrix and subjected to static pressurization of 2.4 MPa was investigated. Biochemical analyses of DNA, glycosaminoglycan (GAG), collagen and protease activity were carried out in various matrix fractions, i.e. cellular matrix (CM) and further removed matrix (FRM), and in culture medium. The treatment of chondrocytes with vitamin C after static pressure increased the GAG content in both CM and FRM (P < 0.03) as compared with control or vitamin C/ static load alone. The collagen content of chondrocytes treated with vitamin C alone and vitamin C after static load also increased significantly in FRM (P < 0.003) as compared with control and static load alone. The specific activity of protease in CM and FRM decreased after vitamin C supplementation both with and without static pressure relative to control (P < 0.003). Transmission electron-microscopic images showed a mixed population of spherical and elliptical chondrocytes when vitamin C was added after static load as compared with static load alone where only elliptical cells were seen. Abundant pericellular and collagen fibrils were seen in this group of chondrocytes as compared with all other groups and the control. The results thus show that, in vitro, vitamin C supplementation of chondrocytes after static loading has the potential to reduce the morphological and biochemical degeneration of chondrocytes caused by static loading, thereby improving the cellular health and functioning of articular cartilage.  相似文献   

10.
Long-Evans rats were exposed to a single dose of head X-irradiation (600 rads) at 2 days of age. Experimental and sham irradiated rats were sacrificed at 14, 20-21, 23, 41-45, and 70-71 days. Tibial epiphyseal width and the number of cells in the epiphyseal plate were determined. Histochemical and electron microscopic studies were carried out on both costal and epiphyseal cartilage. Histochemical techniques revealed a reduction in chondroitin sulfate at 14 days in both costal and epiphyseal cartilage of X-irradiated rats. Epiphyseal cartilage demonstrated recovery subsequently, and this was followed by a normal decrease of chondroitin sulfate with increasing age, but costal cartilage did not recover. Collagen synthesis was also reduced in both costal and epiphyseal cartilage, but not as dramatically as chondroitin sulfate. Except for some electron dense cells and reduced scalloping of the cell membrane, costal chondrocytes from irradiated rats did not show major ultrastructural alterations. In contrast, epiphyseal chondrocytes demonstrated radiation induced alterations in organelles, in enhanced glycogen deposition, and in retardation of chondrocyte maturation. Extracellularly in both costal and epiphyseal cartilage of irradiated rats, collagen density and matrix granules were reduced, while calcification of the matrix was enhanced. Beyond 45 days, the effects of irradiation were markedly reduced. Comparisons of the histochemical results with metabolic studies carried out previously in cartilage from the same animals indicated a more direct concordance of the histochemical results with the pattern of physical growth and supported the usefulness of morphologic and histochemical techniques in the analysis of the growth disorder in the head-irradiated rat.  相似文献   

11.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

12.
In order to standardize and to characterize a chondrocyte primary culture, cells from rat rib resting cartilage were used. High yield (0.99 +/- 0.18 x 10(6) cells/rat) and viability (91.76%) of costal cartilage cells was reached by enzymatic digestion with collagenase. The cells were cultivated in Dulbecco's medium (DME) supplemented with 10%. Heat inactivated newborn calf serum, at 37 degrees under humidified atmosphere of 5% CO2 in air. Two or three days after plating, the cells were attached to the surface of tissue culture weel, and began dividing. Adhesion was independent of plating density. The doubling time of cell population was found to be 23.19 hours. The cells became a monolayer and required easy maintenance. The results support the contention that rat costal cartilage is a good source of chondrocytes for primary culture cells experiments.  相似文献   

13.
1alpha,25(OH)(2)D(3) regulates rat growth plate chondrocytes via nuclear vitamin D receptor (1,25-nVDR) and membrane VDR (1,25-mVDR) mechanisms. To assess the relationship between the receptors, we examined the membrane response to 1alpha,25(OH)(2)D(3) in costochondral cartilage cells from wild type VDR(+/+) and VDR(-/-) mice, the latter lacking the 1,25-nVDR and exhibiting type II rickets and alopecia. Methods were developed for isolation and culture of cells from the resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) of the costochondral cartilages from wild type and homozygous knockout mice. 1alpha,25(OH)(2)D(3) had no effect on [(3)H]-thymidine incorporation in VDR(-/-) GC cells, but it increased [(3)H]-thymidine incorporation in VDR(+/+) cells. Proteoglycan production was increased in cultures of both VDR(-/-) and VDR(+/+) cells, based on [(35)S]-sulfate incorporation. These effects were partially blocked by chelerythrine, which is a specific inhibitor of protein kinase C (PKC), indicating that PKC-signaling was involved. 1alpha,25(OH)(2)D(3) caused a 10-fold increase in PKC specific activity in VDR(-/-), and VDR(+/+) GC cells as early as 1 min, supporting this hypothesis. In contrast, 1alpha,25(OH)(2)D(3) had no effect on PKC activity in RC cells isolated from VDR(-/-) or VDR(+/+) mice and neither 1beta,25(OH)(2)D(3) nor 24R,25(OH)(2)D(3) affected PKC in GC cells from these mice. Phospholipase C (PLC) activity was also increased within 1 min in GC chondrocyte cultures treated with 1alpha,25(OH)(2)D(3). As noted previously for rat growth plate chondrocytes, 1alpha,25(OH)(2)D(3) mediated its increases in PKC and PLC activities in the VDR(-/-) GC cells through activation of phospholipase A(2) (PLA(2)). These responses to 1alpha,25(OH)(2)D(3) were blocked by antibodies to 1,25-MARRS, which is a [(3)H]-1,25(OH)(2)D(3) binding protein identified in chick enterocytes. 24R,25(OH)(2)D(3) regulated PKC in VDR(-/-) and VDR(+/+) RC cells. Wild type RC cells responded to 24R,25(OH)(2)D(3) with an increase in PKC, whereas treatment of RC cells from mice lacking a functional 1,25-nVDR caused a time-dependent decrease in PKC between 6 and 9 min. 24R,25(OH)(2)D(3) dependent PKC was mediated by phospholipase D, but not by PLC, as noted previously for rat RC cells treated with 24R,25(OH)(2)D(3). These results provide definitive evidence that there are two distinct receptors to 1alpha,25(OH)(2)D(3). 1alpha,25(OH)(2)D(3)-dependent regulation of DNA synthesis in GC cells requires the 1,25-nVDR, although other physiological responses to the vitamin D metabolite, such as proteoglycan sulfation, involve regulation via the 1,25-mVDR.  相似文献   

14.
目的: 研究以纤维蛋白封闭剂(FS)为载体复合人胚关节软骨细胞体内构建可注射性组织工程软骨的可行性。方法:常规分离消化,体外单层培养胎儿关节软骨细胞,观察软骨细胞的生物学特性。分别将1×107、2×107、3×107第4代软骨细胞与FS混合接种于裸鼠皮下, 并于第10周取材判断体内形成软骨的能力。结果: 3~4代软骨细胞保持了很高的增殖和分泌基质的能力。软骨细胞与FS的复合物体内接种后各组均可形成软骨样组织块,其湿重、GAG含量随着接种细胞数量的增多而增高,各组之间差异具有显著性(p<0.05)。3×107细胞组GAG含量与正常人胚关节软骨没有差异(p>0.05)。组织切片显示软骨细胞位于类似正常软骨组织的陷窝中,阿尔新蓝染色及II型胶原表达阳性,细胞内富含高尔基体、粗面内质网及大量分泌泡。结论: FS和人胚关节软骨细胞可以作为理想的支架材料和种子细胞应用于可注射软骨组织的构建。  相似文献   

15.
Shahin K  Doran PM 《PloS one》2011,6(8):e23119
Production of tissue-engineered cartilage involves the synthesis and accumulation of key constituents such as glycosaminoglycan (GAG) and collagen type II to form insoluble extracellular matrix (ECM). During cartilage culture, macromolecular components are released from nascent tissues into the medium, representing a significant waste of biosynthetic resources. This work was aimed at developing strategies for improving ECM retention in cartilage constructs and thus the quality of engineered tissues produced in bioreactors. Human chondrocytes seeded into polyglycolic acid (PGA) scaffolds were cultured in perfusion bioreactors for up to 5 weeks. Analysis of the size and integrity of proteoglycans in the constructs and medium showed that full-sized aggrecan was being stripped from the tissues without proteolytic degradation. Application of low (0.075 mL min(-1)) and gradually increasing (0.075-0.2 mL min(-1)) medium flow rates in the bioreactor resulted in the generation of larger constructs, a 4.0-4.4-fold increase in the percentage of GAG retained in the ECM, and a 4.8-5.2-fold increase in GAG concentration in the tissues compared with operation at 0.2 mL min(-1). GAG retention was also improved by pre-culturing seeded scaffolds in flasks for 5 days prior to bioreactor culture. In contrast, GAG retention in PGA scaffolds infused with alginate hydrogel did not vary significantly with medium flow rate or pre-culture treatment. This work demonstrates that substantial improvements in cartilage quality can be achieved using scaffold and bioreactor culture strategies that specifically target and improve ECM retention.  相似文献   

16.
We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes. Using these data, we constructed a culture medium (DATP5) in which growth plate cells essentially recapitulate their normal behavior in vivo. Here, we used DATP5 to examine the behavior of chondrocytes isolated from lesions of tibial dyschondroplasia (TD). We found that once isolated from lesion and grown in this supportive medium, dysplasic chondrocytes behaved essentially like normal growth plate cells. These findings suggest that the cause of TD is local factors operating in vivo to prevent these cells from developing normally. With respect to articular chondrocytes, our data indicate that they more closely retain normal protein and proteoglycan synthesis when grown in serum-free media. These cells readily induced mineral formation in vitro, both in the presence and absence of serum. However, in serum-containing media, mineralization was significantly enhanced when the cells were exposed to retinoic acid (RA) or osteogenic protein-1 (OP-1). Our studies support previous work indicating the presence of autocrine factors produced by articular chondrocytes in vivo that prevent mineralization and preserve matrix integrity. The lack of inhibitory factors and the presence of supporting factors are likely reasons for the induction of mineralization by articular chondrocytes in vitro.  相似文献   

17.
Studies were made on the effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on the syntheses of DNA and glycosaminoglycans (GAG) by rat aortic smooth muscle cells (SMC) in vitro. DNA synthesis in cell cultures without fetal calf serum (FCS) was stimulated by incubation for 24 hr with 1,25-(OH)2D3 at concentrations of more than 10(-12) M, stimulation being maximal at a concentration of 10(-8) M. On the other hand, GAG synthesis was inhibited dose-dependently by 1,25-(OH)2D3 at concentrations of more than 10(-11) M. Other vitamin D3 metabolites had similar, but weaker effects on the syntheses of DNA and GAG by SMC, which were proportional to their affinities for the 1,25-(OH)2D3 receptor. These effects of 1,25-(OH)2D3 were not seen after short-term incubation (1 hr). These findings suggested that 1,25-(OH)2D3 stimulated the proliferation of SMC independent of growth factors in FCS, and that its effects were dependent on its specific receptor. Excess 1,25-(OH)2D3 might cause arteriosclerosis not only by stimulating proliferation but also by suppressing GAG synthesis.  相似文献   

18.
Articular cartilage is often used for research on cartilage tissue engineering. However, ear cartilage is easier to harvest, with less donor-site morbidity. The aim of this study was to evaluate whether adult human ear chondrocytes were capable of producing cartilage after expansion in monolayer culture. Cell yield per gram of cartilage was twice as high for ear than for articular cartilage. Moreover, ear chondrocytes proliferated faster. Cell proliferation could be further stimulated by the use of serum-free medium with Fibroblast Growth Factor 2 (FGF2) in stead of medium with 10% serum. To evaluate chondrogenic capacity, multiplied chondrocytes were suspended in alginate and implanted subcutaneously in athymic mice. After 8 weeks the constructs demonstrated a proteoglycan-rich matrix that contained collagen type II. Constructs of ear chondrocytes showed a faint staining for elastin. Quantitative RT-PCR revealed that expression of collagen type II was 2-fold upregulated whereas expression of collagen type I was 2-fold down regulated in ear chondrocytes expanded in serum-free medium with FGF2 compared to serum-containing medium. Expression of alkaline phosphatase and collagen type X were low indicating the absence of terminal differentiation. We conclude that ear chondrocytes can be used as donor chondrocytes for cartilage tissue engineering. Furthermore, it may proof to be a promising alternative cell source to engineer cartilage for articular repair.  相似文献   

19.
This study evaluated the extent of differentiation and cartilage biosynthetic capacity of human adult adipose‐derived stem cells relative to human fetal chondrocytes. Both types of cell were seeded into nonwoven‐mesh polyglycolic acid (PGA) scaffolds and cultured under dynamic conditions with and without addition of TGF‐β1 and insulin. Gene expression for aggrecan and collagen type II was upregulated in the stem cells in the presence of growth factors, and key components of articular cartilage such as glycosaminoglycan (GAG) and collagen type II were synthesized in cultured tissue constructs. However, on a per cell basis and in the presence of growth factors, accumulation of GAG and collagen type II were, respectively, 3.4‐ and 6.1‐fold lower in the stem cell cultures than in the chondrocyte cultures. Although the stem cells synthesized significantly higher levels of total collagen than the chondrocytes, only about 2.4% of this collagen was collagen type II. Relative to cultures without added growth factors, treatment of the stem cells with TGF‐β1 and insulin resulted in a 59% increase in GAG synthesis, but there was no significant change in collagen production even though collagen type II gene expression was upregulated 530‐fold. In contrast, in the chondrocyte cultures, synthesis of collagen type II and levels of collagen type II as a percentage of total collagen more than doubled after growth factors were applied. Although considerable progress has been achieved to develop differentiation strategies and scaffold‐based culture techniques for adult mesenchymal stem cells, the extent of differentiation of human adipose‐derived stem cells in this study and their capacity for cartilage synthesis fell considerably short of those of fetal chondrocytes. Biotechnol. Bioeng. 2010;107: 393–401. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
During endochondral development, growth plate chondrocytes must remodel their matrix in a number of ways as they differentiate and mature. In previous studies, we have shown that matrix metalloproteinases (MMPs) extracted from matrix vesicles can extensively degrade aggrecan and that this is modulated by vitamin D metabolites in a manner involving protein kinase C (PKC). Matrix vesicles represent only a small component of the extracellular matrix, however, and it is unknown if the total metalloproteinase complement, including the MMPs and aggrecanases in the culture, is also regulated in a similar way. This study tested the hypothesis that vitamin D metabolites regulate the level of metalloproteinase activity in growth plate chondrocytes via a PKC-dependent mechanism and play a role in partitioning this proteinase activity between the media and cell layer (cells+matrix) in these cultures. To do this, resting zone cells (RC) were treated with 10(-9)-10(-7) M 24R,25-(OH)(2)D(3), while growth zone cells (GC) were treated with 10(-10)-10(-8) M 1alpha,25-(OH)(2)D(3). Cultures of both cell types were also treated with the PKC inhibitor chelerythrine in the presence and absence of vitamin D metabolites. At harvest, the media were either left untreated or treated to destroy metalloproteinase inhibitors, while enzyme activity in the cell layers was extracted with buffered guanidine and then treated like the media to destroy metalloproteinase inhibitors. Neutral metalloproteinase (aggrecan-degrading activity) activity was assayed on aggrecan-containing polyacrylamide gel beads and collagenase activity was measured on telopeptide-free type I collagen. Neutral metalloproteinase activity was found primarily in the cell layer of both cell types; however, activity was greater in extracts of GC cell layers. No collagenase activity could be detected in RC extracts until the metalloproteinase inhibitors were destroyed. In contrast, extracts of GC cell layers contained measurable activity without removing the inhibitors, and destroying the inhibitors resulted in a greater than two-fold increase in activity. No collagenase activity was found in the media of either cell type. 24,25-(OH)(2)D(3) caused a dose-dependent increase in neutral metalloproteinase activity in extracts of RC cells, but had no effect on collagenase activity. In contrast, 1,25-(OH)(2)D(3) caused a dose-dependent decrease in collagenase activity in extracts of GC cells, but had no effect on neutral metalloproteinase activity. In both cases, the effect of the vitamin D metabolite was mediated through the activation of PKC. These results support the hypothesis that metalloproteinases are involved in regulating the bulk turnover of collagen and aggrecan in growth plate chondrocytes and that the amount of metalloproteinase activity found is a function of the cell maturation state. Furthermore, 83-93% of neutral metalloproteinase activity and 100% of collagenase activity is localized to the cell layer. Moreover, the regulation of metalloproteinase activity by 1,25-(OH)(2)D(3) and 24,25-(OH)(2)D(3) involves a PKC-dependent pathway that is controlled by the target cell-specific vitamin D metabolite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号