首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of artificial microRNAs (amiRNAs) in plants can target and degrade the invading viral RNA, consequently conferring virus resistance. Two amiRNAs, targeting the coding sequence shared by the 2a and 2b genes and the highly conserved 3′ untranslated region (UTR) of Cucumber mosaic virus (CMV), respectively, were generated and introduced into the susceptible tomato. The transgenic tomato plants expressing amiRNAs displayed effective resistance to CMV infection and CMV mixed with non-targeted viruses, including tobacco mosaic virus and tomato yellow leaf curl virus. A series of grafting assays indicate scions originated from the transgenic tomato plant maintain stable resistance to CMV infection after grafted onto a CMV-infected rootstock. However, the grafting assay also suggests that the amiRNA-mediated resistance acts in a cell-autonomous manner and the amiRNA signal cannot be transmitted over long distances through the vascular system. Moreover, transgenic plants expressing amiRNA targeting the 2a and 2b viral genes displayed slightly more effective to repress CMV RNA accumulation than transgenic plants expressing amiRNA targeting the 3′ UTR of viral genome did. Our work provides new evidence of the use of amiRNAs as an effective approach to engineer viral resistance in the tomato and possibly in other crops.  相似文献   

2.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

3.
4.
Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Escherichia coli, a kanamycin‐sensitive model bacterium, under simulated HGT, staged by subcloning Atwbc19 under the control of a bacterial promoter, genetically transforming to kanamycin‐sensitive bacteria, and assessing if resistance was conferred as compared with bacteria harbouring nptII, the standard kanamycin resistance gene used to produce transgenic plants. NptII provided much greater resistance than Atwbc19 and was significantly different from the no‐plasmid control at low concentrations. Atwbc19 was not significantly different from the no‐plasmid control at higher concentrations. Even though HGT risks are considered low with nptII, Atwbc19 should have even lower risks, as its encoded protein is possibly mistargeted in bacteria.  相似文献   

5.
6.
7.
8.
Transgenic maize (Zea mays L.) plants have been generated by particle gun bombardment that overproduce an Arabidopsis thaliana iron superoxide dismutase (FeSOD). To target this enzyme into chloroplasts, the mature Fesod coding sequence was fused to a chloroplast transit peptide from a pea ribulose-1,5-bisphosphate carboxylase gene. Expression of the chimeric gene was driven by the CaMV 35S promoter. Growth characteristics and in vitro oxidative stress tolerance of transgenic lines grown in control and chilling temperatures were evaluated. The transgenic line with the highest transgenic FeSOD activities had enhanced tolerance toward methyl viologen and had increased growth rates.  相似文献   

9.
White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea , B. rapa and B. oleracea , respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance ( WRR ) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 ( EDS1 ). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana . The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.  相似文献   

10.
High-salinity, drought, and low temperature are three common environmental stress factors that seriously influence plant growth and development worldwide. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that have also been linked to stress responses. However, the relationship between miRNA expression and stress responses is just beginning to be explored. Here, we identified 14 stress-inducible miRNAs using microarray data in which the effects of three abiotic stresses were surveyed in Arabidopsis thaliana. Among them, 10 high-salinity-, four drought-, and 10 cold-regulated miRNAs were detected, respectively. miR168, miR171, and miR396 responded to all of the stresses. Expression profiling by RT-PCR analysis showed great cross-talk among the high-salinity, drought, and cold stress signaling pathways. The existence of stress-related elements in miRNA promoter regions provided further evidence supporting our results. These findings extend the current view about miRNA as ubiquitous regulators under stress conditions.  相似文献   

11.
12.
13.
Pang CH  Li K  Wang B 《Physiologia plantarum》2011,143(4):355-366
To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)‐scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid‐bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137‐bp open reading frame (ORF) and encodes 378 amino acids. The thylakoid‐bound APX of S. salsa (Ss.tAPX) cDNA consists of 1561 nucleotides, including a 1284‐bp ORF, and encodes 427 amino acids. The N‐terminal 378 amino acids of Ss.sAPX are identical with those of Ss.tAPX, whereas the C‐terminal 49 amino acids differ. Arabidopsis thaliana lines overexpressing Ss.sAPX and Ss.tAPX were constructed using Agrobacterium tumefaciens transformation methods. Under high light (1000 µmol m?2 s?1), malondialdehyde (MDA) content was lower in transgenic plants than in the wild type. Under high light, Fv/Fm and chlorophyll contents of both overexpressing lines and the wild type declined but were significantly higher in the overexpressing lines than in the wild type. The activities of APX (EC 1.11.1.11), catalase (CAT 1.11.1.6) and superoxide dismutase (SOD EC 1.15.1.1) were higher in the overexpressing lines than in the wild type. The transgenic plants showed increased tolerance to oxidative stress caused by high light. These results suggest that SsCHLAPX plays an important role in scavenging ROS in chloroplasts under stress conditions such as high light.  相似文献   

14.
15.
Transgenic tobacco plants containing a mouse metallothionein-I (MT-I) gene fused to the cauliflower mosaic virus 35S (CaMV 35S) promoter and nopaline synthase (nos) polyadenylation site were obtained by transforming tobacco leaf discs with an Agrobacterium tumefaciens strain carrying the chimaeric gene. Transformants were directly selected and rooted on medium containing cadmium and kanamycin. A total of 49 individual transgenic tobacco plants were regenerated. Among them 20% showed a very high expression level and their growth was unaffected by up to 200 M cadmium, whereas the growth of control plants was severely affected leaf chlorosis occurred on medium containing only 10 M cadmium. The concentration of MT-I in leaves of control and transgenic tobacco was determined with Cd/haemoglobin saturation assay, a polarographic method and western blotting. In addition, seeds from self-fertilized transgenic plants were germinated on medium containing toxic levels of cadmium and scored for tolerance/susceptibility to this heavy metal. The ratio of tolerant to susceptible plants was 3:1 indicating that the metallothionein gene is inherited as a single locus.  相似文献   

16.
17.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   

18.
Twelve Arabidopsis accessions were challenged with Plum pox potyvirus (PPV) isolates representative of the four PPV strains. Each accession supported local and systemic infection by at least some of the PPV isolates, but high variability was observed in the behavior of the five PPV isolates or the 12 Arabidopsis accessions. Resistance to local infection or long-distance movement occurred in about 40% of all the accession-isolate combinations analyzed. Except for Nd-1, all accessions showed resistance to local infection by PPV-SoC; in the Landsberg erecta (Ler) accession, this resistance was compromised by sgt1 and rar1 mutations, suggesting that it could be controlled by an R gene-mediated resistance pathway. While most of the susceptible accessions were symptomless, PPV induced severe symptoms on inflorescences in C24, Ler, and Bay-0 as early as 15 days after inoculation. Genetic analyses indicated that these interaction phenotypes are controlled by different genetic systems. The restriction of long-distance movement of PPV-El Amar and of another member of genus Potyvirus, Lettuce mosaic virus, in Col-0 requires the RTM genes, indicating for the first time that the RTM system may provide a broad range, potyvirus-specific protection against systemic infection. The restriction to PPV-PS long-distance movement in Cvi-1 is controlled by a single recessive gene, designated rpv1, which was mapped to chromosome 1. The nuclear inclusion polymerase b-capsid protein region of the viral genome appears to be responsible for the ability of PPV-R to overcome rpv1-mediated resistance.  相似文献   

19.
Like protein-coding genes, loci that produce microRNAs (miRNAs) are generally considered to be under purifying selection, consistent with miRNA polymorphisms being able to cause disease. Nevertheless, it has been hypothesized that variation in miRNA genes may contribute to phenotypic diversity. Here we demonstrate that a naturally occurring polymorphism in the MIR164A gene affects leaf shape and shoot architecture in Arabidopsis thaliana, with the effects being modified by additional loci in the genome. A single base pair substitution in the miRNA complementary sequence alters the predicted stability of the miRNA:miRNA(?) duplex. It thereby greatly reduces miRNA accumulation, probably because it interferes with precursor processing. We demonstrate that this is not a rare exception and that natural strains of Arabidopsis thaliana harbor dozens of similar polymorphisms that affect processing of a wide range of miRNA precursors. Our results suggest that natural variation in miRNA biogenesis resulting from cis mutations is a common contributor to phenotypic variation in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号