首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background and Aims

Floral symmetry presents two main states in angiosperms, actinomorphy (polysymmetry or radial symmetry) and zygomorphy (monosymmetry or bilateral symmetry). Transitions from actinomorphy to zygomorphy have occurred repeatedly among flowering plants, possibly in coadaptation with specialized pollinators. In this paper, the rules controlling the evolution of floral symmetry were investigated to determine in which architectural context zygomorphy can evolve.

Methods

Floral traits potentially associated with perianth symmetry shifts in Asteridae, one of the major clades of the core eudicots, were selected: namely the perianth merism, the presence and number of spurs, and the androecium organ number. The evolution of these characters was optimized on a composite tree. Correlations between symmetry and the other morphological traits were then examined using a phylogenetic comparative method.

Key Results

The analyses reveal that the evolution of floral symmetry in Asteridae is conditioned by both androecium organ number and perianth merism and that zygomorphy is a prerequisite to the emergence of spurs.

Conclusions

The statistically significant correlation between perianth zygomorphy and oligandry suggests that the evolution of floral symmetry could be canalized by developmental or spatial constraint. Interestingly, the evolution of polyandry in an actinomorphic context appears as an alternative evolutionary pathway to zygomorphy in Asteridae. These results may be interpreted either in terms of plant–pollinator adaptation or in terms of developmental or physical constraints. The results are discussed in relation to current knowledge about the molecular bases underlying floral symmetry.Key words: Floral symmetry, architectural constraints, Asteridae, comparative analysis, composite tree, correlated evolution, evolutionary scenario  相似文献   

2.
Gynoecium diversity and systematics of the basal eudicots   总被引:6,自引:0,他引:6  
Gynoecium and ovule structure was compared in representatives of the basal eudicots, including Ranunculales (Berberidaceae, Circaeasteraceae, Eupteleaceae, Lardizabalaceae, Menispermaceae, Papaveraceae, Ranunculaceae), Proteales (Nelumbonaceae, Platanaceae, Proteaceae), some families of the former ‘lower’ hamamelids that have been moved to Saxifragales (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, Hamamelidaceae), and some families of uncertain position (Gunneraceae, Myrothamnaceae, Buxaceae, Sabiaceae, Trochodendraceae). In all representatives studied, the carpels (or syncarpous gynoecia) are closed at anthesis. This closure is attained in different ways: (1) by secretion without postgenital fusion (Berberidaceae, Papaveraceae, Nelumbonaceae, probably Circaeaster); (2) by a combination of postgenital fusion and secretion; (2a) with a complete secretory canal and partly postgenitally fused periphery (Lardizabalaceae, Menispermaceae, some Ranunculaceae, Sabiaceae); (2b) with an incomplete secretory canal and completely fused periphery (Tro-chodendron); (3) by complete postgenital fusion without a secretory canal (most Ranunculaceae, Eupteleaceae, Platanaceae, Proteaceae, all families of Saxifragales and incertae sedis studied here). Stigmas are double-crested and decurrent in most of the non-ranunculalian taxa; unicellular-papillate in most taxa, but with multicellular protuberances in Daphniphyllaceae and Hamamelidaceae. Carpels predominantly have three vascular bundles, but five in Proteales (without Nelumbonaceae), Myrothamnaceae and Trochodendraceae. The latter two also share ‘oil’ cells in the carpels. Stomata on the outer carpel surface are present in the majority of Ranunculales and Proteales, but tend to be lacking in the saxifragalian families. In basal eudicots, especially in the non-ranunculalian families there is a trend to form more than one ovule per carpel but to develop only one seed, likewise there is a trend to have immature ovules at anthesis. Ovule number per carpel is predominantly one or two. Proteales (without Nelumbonales) mainly have orthotropous ovules, the other groups have anatropous (or hemitropous or campylotropous) ovules. The outer integument is annular in the groups with orthotropous or hemitropous ovules, and also in a number of saxifragalian families with anatropous ovules. In Proteales the integuments are predominantly lobed but there is no distinct pattern in this feature among the other groups. Among Ranunculales two pairs of families (Lardizabalaceae/Menispermaceae and Bcrberidaceae/Papaveraceae) due to similarities in gynoecium structure can be recognized, which are not apparent in molecular analyses. The close relationship of Platanaceae and Proteaceae is supported by gynoecium structure but gynoecial features do not support their affinity to Nelumbonaceae. The alliance of Daphniphyllaceae with Hamamelidaceae s.l. is also supported.  相似文献   

3.

Background and Aims

Annonaceae are one of the largest families of Magnoliales. This study investigates the comparative floral development of 15 species to understand the basis for evolutionary changes in the perianth, androecium and carpels and to provide additional characters for phylogenetic investigation.

Methods

Floral ontogeny of 15 species from 12 genera is examined and described using scanning electron microscopy.

Key Results

Initiation of the three perianth whorls is either helical or unidirectional. Merism is mostly trimerous, occasionally tetramerous and the members of the inner perianth whorl may be missing or are in double position. The androecium and the gynoecium were found to be variable in organ numbers (from highly polymerous to a fixed number, six in the androecium and one or two in the gynoecium). Initiation of the androecium starts invariably with three pairs of stamen primordia along the sides of the hexagonal floral apex. Although inner staminodes were not observed, they were reported in other genera and other families of Magnoliales, except Magnoliaceae and Myristicaceae. Initiation of further organs is centripetal. Androecia with relatively low stamen numbers have a whorled phyllotaxis throughout, while phyllotaxis becomes irregular with higher stamen numbers. The limits between stamens and carpels are unstable and carpels continue the sequence of stamens with a similar variability.

Conclusions

It was found that merism of flowers is often variable in some species with fluctuations between trimery and tetramery. Doubling of inner perianth parts is caused by (unequal) splitting of primordia, contrary to the androecium, and is independent of changes of merism. Derived features, such as a variable merism, absence of the inner perianth and inner staminodes, fixed numbers of stamen and carpels, and capitate or elongate styles are distributed in different clades and evolved independently. The evolution of the androecium is discussed in the context of basal angiosperms: paired outer stamens are the consequence of the transition between the larger perianth parts and much smaller stamens, and not the result of splitting. An increase in stamen number is correlated with their smaller size at initiation, while limits between stamens and carpels are unclear with easy transitions of one organ type into another in some genera, or the complete replacement of carpels by stamens in unisexual flowers.  相似文献   

4.
5.
Floral monosymmetry and asymmetry are traced through the angiosperm orders and families. Both are diverse and widespread in angiosperms. The systematic distribution of the different forms of monosymmetry and asymmetry indicates that both evolved numerous times. Elaborate forms occur in highly synorganized flowers. Less elaborate forms occur by curvature of organs and by simplicity with minimal organ numbers. Elaborate forms of asymmetry evolved from elaborate monosymmetry. Less elaborate form come about by curvature or torsion of organs, by imbricate aestivation of perianth organs, or also by simplicity. Floral monosymmetry appears to be a key innovation in some groups (e.g., Orchidaceae, Fabaceae, Lamiales), but not in others. Floral asymmetry appears as a key innovation in Phaseoleae (Fabaceae). Simple patterns of monosymmetry appear easily “reverted” to polysymmetry, whereas elaborate monosymmetry is difficult to lose without disruption of floral function (e.g., Orchidaceae). Monosymmetry and asymmetry can be expressed at different stages of floral (and fruit) development and may be transient in some taxa. The two symmetries are most common in bee-pollinated flowers, and appear to be especially prone to develop in some specialized biological situations: monosymmetry, e.g., with buzz-pollinated flowers or with oil flowers, and asymmetry also with buzz-pollinated flowers, both based on the particular collection mechanisms by the pollinating bees. Floral monosymmetry has developed into a model trait in evo-devo studies, whereas floral asymmetry to date has not been tackled in molecular genetic studies.  相似文献   

6.
Petaloid organs are a major component of the floral diversity observed across nearly all major clades of angiosperms. The variable morphology and development of these organs has led to the hypothesis that they are not homologous but, rather, have evolved multiple times. A particularly notable example of petal diversity, and potential homoplasy, is found within the order Ranunculales, exemplified by families such as Ranunculaceae, Berberidaceae, and Papaveraceae. To investigate the molecular basis of petal identity in Ranunculales, we used a combination of molecular phylogenetics and gene expression analysis to characterize APETALA3 (AP3) and PISTILLATA (PI) homologs from a total of 13 representative genera of the order. One of the most striking results of this study is that expression of orthologs of a single AP3 lineage is consistently petal-specific across both Ranunculaceae and Berberidaceae. We conclude from this finding that these supposedly homoplastic petals in fact share a developmental genetic program that appears to have been present in the common ancestor of the two families. We discuss the implications of this type of molecular data for long-held typological definitions of petals and, more broadly, the evolution of petaloid organs across the angiosperms.  相似文献   

7.
The floral ontogeny of three species of Tropaeolum was studiedusing scanning electron microscopy to find morphological evidencefor discussing the systematic position of the family. The initiationof the androecium is highly unusual: there are always eightstamens which arise (1) either in a spiral sequence startingwith the stamen opposite sepal four, running in a directionopposite to the sequence of the sepals, and with reversals inthe direction of the spiral, or (2) as a sequence of pairedand unpaired stamens. The floral symmetry changes twice duringthe development of the flower, from polysymmetrical at sepaland petal initiation, through oblique monosymmetry at stameninitiation, and ending with median monosymmetry in later developmentalstages. The occurrence of median monosymmetry is a late-developmentalevent and is caused by the initiation of a hypanthial spur,and the unequal growth of the petals and styles. The originfor the unusual sequence of stamen initiation reflects a trendaffecting the whole flower which is linked with the changingpatterns of floral symmetry. Octandry is enhanced by multiplecauses, such as the loss of two stamens in an originally diplostemonousandroecium and the regulating pressure of the gynoecium. Thechange in symmetry during ontogeny is significant for discussingthe systematic position of Tropaeolaceae in comparison withthe glucosinolate-producing taxa and the Sapindales. The combinationof an androecium with eight stamens and oblique monosymmetryis either a single event in evolution and links Tropaeolum withthe Sapindales, or it has evolved at least twice, once in theSapindales, and once in a clade comprising Tropaeolaceae, Akaniaceaeand Bretschneideraceae. Morphological data support a sistergroup relationship of the three latter families, which is inline with macromolecular studies. Copyright 2001 Annals of BotanyCompany Tropaeolum, Tropaeolaceae, Glucosinolate clade, Sapindales, oblique monosymmetry, androecium, octandry, floral development, phylogeny  相似文献   

8.
Previous phylogenetic analyses of Ranunculales, which have mostly been focused on an individual family and were based on molecular data alone, have recovered three main clades within the order. However, support for relationships among these three clades was weak. Earlier hypotheses were often hampered by limited taxon sampling; to date less than one-tenth of the genera in the order have been sampled. In this study, we used a greatly enlarged taxon sampling (105 species, representing 99 genera of all seven families in the order). Our study is, furthermore, the first to employ morphology (65 characters) in combination with sequence data from four genomic regions, including plastid rbcL, matK and trnL-F, and nuclear ribosomal 26S rDNA to reconstruct phylogenetic relationships within Ranunculales. Maximum parsimony and Bayesian inference were performed on the individual and combined data sets. Our analyses concur with those of previous studies, but in most cases provide stronger support and better resolution for relationships among the three main clades retrieved. The first, comprised solely of the monogeneric family Eupteleaceae, is the earliest-diverging lineage. The second clade is composed exclusively of taxa of Papaveraceae, which is sister to the third clade, the core Ranunculales, comprising the other five families of the order. Circaeasteraceae and Lardizabalaceae form a strongly supported clade. Pteridophyllum is supported as sister to Hypecoum, contradicting the viewpoint that the former is the earliest-diverging genus in Papaveraceae. Glaucidium is basalmost in Ranunculaceae. Within this phylogenetic framework, the evolution of selected characters is inferred and diagnostic morphological characters at different taxonomic levels are identified and discussed. Based on both morphological and molecular evidence, a classification outline for Ranunculales is presented, including the proposal of two new subfamilies, Menispermoideae and Tinosporoideae in Menispermaceae and a new tribe, Callianthemeae, for the genus Callianthemum (Ranunculaceae).  相似文献   

9.
Ren Y  Li HF  Zhao L  Endress PK 《Annals of botany》2007,100(2):185-193
BACKGROUND AND AIMS: Based on molecular phylogenetic studies, the unigeneric family Eupteleaceae has a prominent phylogenetic position at or near the base of Ranunculales, which, in turn, appear at the base of eudicots. The aim of the present paper is to reveal developmental features of the flowers and to put the genus in a morphological context with other basal eudicots. METHODS: Flowers in all developmental stages of Euptelea pleiosperma were collected in the wild at intervals of 7-10 d in the critical stages and studied with a scanning electron microscope. KEY RESULTS: Remnants of a perianth are lacking throughout flower development. Floral symmetry changes from monosymmetric to asymmetric to disymmetric during development. Asymmetry is expressed in that the sequence of stamen initiation is from the centre to both lateral sides on the adaxial side of the flower but starting from one lateral side and proceeding to the other on the abaxial side. Despite the pronounced floral disymmetry, a dimerous pattern of floral organs was not found. The carpel primordia arise between the already large stamens and alternate with them. Stamens and carpels each form a somewhat irregular whorl. The carpels are ascidiate from the beginning. The stigma differentiates as two crests along the ventral slit of the ovary. The few lateral ovules alternate with each other. CONCLUSIONS: Although the flowers have some unusual autapomorphies (wind pollination, lack of a perianth, pronounced disymmetry of the floral base, long connective protrusion, long temporal gap between androecium and gynoecium initiation, small space for carpel initiation), they show some plesiomorphies at the level of basal eudicots (free carpels, basifixed anthers, whorled phyllotaxis), and thus fit well in Ranunculales.  相似文献   

10.
11.
12.
13.
Background and Aims Fumarioideae (20 genera, 593 species) is a clade of Papaveraceae (Ranunculales) characterized by flowers that are either disymmetric (i.e. two perpendicular planes of bilateral symmetry) or zygomorphic (i.e. one plane of bilateral symmetry). In contrast, the other subfamily of Papaveraceae, Papaveroideae (23 genera, 230 species), has actinomorphic flowers (i.e. more than two planes of symmetry). Understanding of the evolution of floral symmetry in this clade has so far been limited by the lack of a reliable phylogenetic framework. Pteridophyllum (one species) shares similarities with Fumarioideae but has actinomorphic flowers, and the relationships among Pteridophyllum, Papaveroideae and Fumarioideae have remained unclear. This study reassesses the evolution of floral symmetry in Papaveraceae based on new molecular phylogenetic analyses of the family.Methods Maximum likelihood, Bayesian and maximum parsimony phylogenetic analyses of Papaveraceae were conducted using six plastid markers and one nuclear marker, sampling Pteridophyllum, 18 (90 %) genera and 73 species of Fumarioideae, 11 (48 %) genera and 11 species of Papaveroideae, and a wide selection of outgroup taxa. Floral characters recorded from the literature were then optimized onto phylogenetic trees to reconstruct ancestral states using parsimony, maximum likelihood and reversible-jump Bayesian approaches.Key Results Pteridophyllum is not nested in Fumarioideae. Fumarioideae are monophyletic and Hypecoum (18 species) is the sister group of the remaining genera. Relationships within the core Fumarioideae are well resolved and supported. Dactylicapnos and all zygomorphic genera form a well-supported clade nested among disymmetric taxa.Conclusions Disymmetry of the corolla is a synapomorphy of Fumarioideae and is strongly correlated with changes in the androecium and differentiation of middle and inner tepal shape (basal spurs on middle tepals). Zygomorphy subsequently evolved from disymmetry either once (with a reversal in Dactylicapnos) or twice (Capnoides, other zygomorphic Fumarioideae) and appears to be correlated with the loss of one nectar spur.  相似文献   

14.
RONSE DECRAENE L. P. AND SMETS E. F., 1993. The distribution and systematic relevance of the androecial character polymery . Two characters, viz. oligomery and polymery, have been previously proposed to circumscribe the localization of the androecium. Their distribution is more or less correlated with two groups of taxa: polymery is found in Magnoliidae, Caryophyllidae, Liliatae and part of Hamamelidae; oligomery is found in Dilleniidae, Rosidae, part of Hamamelidae and Asteridae. Polymery can be described by a number of character states, which are presented in a semophyletical scheme. Spiral polyandry, i.e. a multistaminate and spiral androecium, represents the plesiomorphic condition for all Magnoliophytina and is restricted to the polymerous group. Cyclization, induced by an arrangement of the perianth in trimerous whorls and a fractioning of the continuous plastochron, leads to polycycly, i.e. an arrangement of the stamens in numerous cycles; the outer stamens are usually inserted as pairs or in alternation with the inner perianth parts. From this configuration reduction series in different groups result in androecia with a lower number of stamen whorls (such as tetracycly, tricycly, dicycly and (ob)monocycly). The transition from trimery to pentamery induces a derived stamen configuration by the merging of two tepaline whorls and the loss of some stamens. für ther reductions accompanied evolution in trimerous flowers and led to conditions resembling diplostemony as observed in Caryophyllaceae, some Hamamelidaceae and Ranunculaceae. Secondary increases, as well as reductions of stamens within a whorl must be regarded as gradual variations of each character state. Different trends affecting the number and position of the stamens can globally be traced along different lines. Polymery is consistent with other floral characters, such as the nature of perianth, vasculature (axial and cortical systems) and merosity. The androecium of a number of families and their relationships are discussed.  相似文献   

15.
Based on the analysis of benzylisoquinoline alkaloids of 323 samples in 11 families, 50 genera and 181 species of the Chinese flora discussed in this paper are the biogenesis, evolution, distribution pattern and botanical sources as well as the pharmacological action of this specific category of alkaloids. Benzylisoquinoline alkaloids are found mainly in Magnoliidae, in which aporphines, bisbenzylisoquinolines and protoberberines are the three major types of the alkaloids. More specifically, aporphines appeare more concentrated in primitive woody plants such as the Annonaceae, while bisbenzylisoquinolines are especially common in the Menispermaceae, Thalictrum (the Ranunculaceae) and Berberis (the Berberidaceae). As to protoberberines, the quaternary ones occur mainly in the families Ranunculaceae and Berberidaceae, whereas the tertiary ones mainly in the relatively advanced families Menispermaceae and Papaveraceae within Magnoliidae. As a whole, a general rule can be drawn that the simpler the chemical structure of the benzylisoquinolines is, the more widely they are distributed in primitive groups; more specific ones only have a limited distribution in more advanced groups or even within one family or one to several genera. This general pattern of distribution of benzylisoquinoline alkaloids in plants may be of value as a taxonomic criterion for plant systematics. Furthermore, this group of alkaloids covers the gamut of pharmacologic responses, such as the antibacterial effect and the effect to cardiovascular and nervous systems, and consequently the correlation between benzylisoquinoline alkaloids and their pharmacologicactivities within Magnoliidae may worthily be applied for the finding of new drugs.  相似文献   

16.

Background and Aims

Ranunculaceae presents both ancestral and derived floral traits for eudicots, and as such is of potential interest to understand key steps involved in the evolution of zygomorphy in eudicots. Zygomorphy evolved once in Ranunculaceae, in the speciose and derived tribe Delphinieae. This tribe consists of two genera (Aconitum and Delphinium s.l.) comprising more than one-quarter of the species of the family. In this paper, the establishment of zygomorphy during development was investigated to cast light on the origin and evolution of this morphological novelty.

Methods

The floral developmental sequence of six species of Ranunculaceae, three actinomorphic (Nigella damascena, Aquilegia alpina and Clematis recta) and three zygomorphic (Aconitum napellus, Delphinium staphisagria and D. grandiflorum), was compared. A developmental model was elaborated to break down the successive acquisitions of floral organ identities on the ontogenic spiral (all the species studied except Aquilegia have a spiral phyllotaxis), giving clues to understanding this complex morphogenesis from an evo-devo point of view. In addition, the evolution of symmetry in Ranunculaceae was examined in conjunction with other traits of flowers and with ecological factors.

Key Results

In the species studied, zygomorphy is established after organogenesis is completed, and is late, compared with other zygomorphic eudicot species. Zygomorphy occurs in flowers characterized by a fixed merism and a partially reduced and transformed corolla.

Conclusions

It is suggested that shifts in expression of genes controlling the merism, as well as floral symmetry and organ identity, have played a critical role in the evolution of zygomorphy in Delphinieae, while the presence of pollinators able to exploit the peculiar morphology of the flower has been a key factor for the maintenance and diversification of this trait.Key words: Delphinieae, development, evolution, evo-devo, nectar spurs, ontogenic spiral, Ranunculaceae, zygomorphy  相似文献   

17.
Senna (Leguminosae) is a large, widespread genus that includes species with enantiostylous, asymmetric flowers and species with extrafloral nectaries. Clarification of phylogenetic relationships within Senna based on parsimony analyses of three chloroplast regions (rpS16, rpL16, and matK) provides new insights on the evolution of floral symmetry and extrafloral nectaries. Our results support the monophyly of only one (Psilorhegma) of the six currently recognized sections, while Chamaefistula, Peiranisia, and Senna are paraphyletic, and monotypic Astroites and Paradictyon are nested within two of the seven major clades identified by our molecular phylogeny. Two clades (I, VII) include only species with monosymmetric flowers, while the remaining clades (II-VI) contain species with asymmetric, enantiostylous flowers, in which either the gynoecium alone or, in addition, corolla and androecium variously contribute to the asymmetry. Our results further suggest that flowers were ancestrally monosymmetric with seven fertile stamens and three adaxial staminodes, switched to asymmetry later, and reverted to monosymmetry in clade VII. Fertility of all 10 stamens is a derived state, characterizing the Psilorhegma subclade. Extrafloral nectaries evolved once and constitute a synapomorphy for clades IV-VII ("EFN clade"). These nectaries may represent a key innovation in plant defense strategies that enabled Senna to undergo large-scale diversification.  相似文献   

18.
A striking aspect of flowering plant (angiosperm) diversity is variation in flower symmetry. From an ancestral form of radial symmetry (polysymmetry, actinomorphy), multiple evolutionary transitions have contributed to instances of non-radial forms, including bilateral symmetry (monosymmetry, zygomorphy) and asymmetry. Advances in flowering plant molecular phylogenetic research and studies of character evolution as well as detailed flower developmental genetic studies in a few model species (e.g. Antirrhinum majus, snapdragon) have provided a foundation for deep insights into flower symmetry evolution. From phylogenetic studies, we have a better understanding of where during flowering plant diversification transitions from radial to bilateral flower symmetry (and back to radial symmetry) have occurred. From developmental studies, we know that a genetic programme largely dependent on the functional action of the CYCLOIDEA gene is necessary for differentiation along the snapdragon dorsoventral flower axis. Bringing these two lines of inquiry together has provided surprising insights into both the parallel recruitment of a CYC-dependent developmental programme during independent transitions to bilateral flower symmetry, and the modifications to this programme in transitions back to radial flower symmetry, during flowering plant evolution.  相似文献   

19.
Floral symmetry and pigmentation are features of flowers that are believed to be associated due to their shared influence on pollinator behaviour. However, the evolution of such associations has so far not been examined. We analysed variation in Rhododendron flowers, in a phylogenetic context, to test whether the evolution of floral symmetry types and pigment patterns are correlated. Variation in floral symmetry due to variation in corolla form, stamen flexion, stamen arrangement, pistil flexion, as well as corolla pigment patterns was documented in 98 species of Rhododendron. Phylogenetic relations among these species were estimated using maximum likelihood (ML) and Bayesian methods, building on a published molecular dataset of sequences of RNA Polymerase II subunit (RPB2-I). Evolution of the floral traits was studied using phylogenetic correlation tests and ancestral state reconstructions (maximum parsimony, MP and ML methods). Significant correlations were found between corolla pigment pattern and type of floral symmetry at the level of corolla form, stamen flexion or arrangement, and pistil flexion. As expected from their similar roles in enhancing attractability to pollinator, monosymmetric corollas and presence of pigment pattern are correlated; in addition, monosymmetry involving other whorls too shows such a relationship with pigment patterns, and with each other. Multiple evolutionary shifts were detected between monosymmetry and polysymmetry of floral traits in Rhododendron. The relationship between floral monosymmetry attributes and presence of corolla pigment patterns, and additionally, frequent evolutionary shifts in these traits suggest pollinator-mediated selective pressures in Rhododendron.  相似文献   

20.
Based on analyses of combined data sets of three genes (18S rDNA, rbcL, and atpB), phylogenetic relationships among the early-diverging eudicot lineages (Ranunculales, Proteales, Trochodendraceae, Sabiaceae, and Buxaceae) remain unclear, as are relationships within Ranunculales, especially the placement of Eupteleaceae. To clarify relationships among these early-diverging eudicot lineages, we added entire sequences of 26S rDNA to the existing three-gene data set. In the combined analyses of four genes based on parsimony, ML, and Bayesian analysis, Ranunculales are strongly supported as a clade and are sister to other eudicots. Proteales appear as sister to the remaining eudicots, which are weakly (59%) supported as a clade. Relationships among Trochodendraceae, Buxaceae (including Didymeles), Sabiaceae, and Proteales remain unclear. Within Ranunculales, Eupteleaceae are sister to all other Ranunculales, with bootstrap support of 70% in parsimony analysis and with posterior probability of 1.00 in Bayesian analysis. Our character reconstructions indicate that the woody habit is ancestral, not only for the basal angiosperms, but also for the eudicots. Furthermore, Ranunculales may not be ancestrally herbaceous, as long maintained. The woody habit appears to have been ancestral for several major clades of eudicots, including Caryophyllales, and asterids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号