首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 336 毫秒
1.
2.
Polyphosphate- and polyhydroxyalkanoate (PHA)-accumulating traits of predominant microorganisms in an efficient enhanced biological phosphorus removal (EBPR) process were investigated systematically using a suite of non-culture-dependent methods. Results of 16S rDNA clone library and fluorescence in situ hybridization (FISH) with rRNA-targeted, group-specific oligonucleotide probes indicated that the microbial community consisted mostly of the alpha- (9.5% of total cells), beta- (41.3%) and gamma- (6.8%) subclasses of the class Proteobacteria, Flexibacter-Cytophaga (4.5%) and the Gram-positive high G+C (HGC) group (17.9%). With individual phylogenetic groups or subgroups, members of Candidatus Accumulibacter phosphatis in the beta-2 subclass, a novel HGC group closely related to Tetrasphaera spp., and a novel gamma-proteobacterial group were the predominant populations. Furthermore, electron microscopy with energy-dispersive X-ray analysis was used to validate the staining specificity of 4,6-diamino-2-phenylindole (DAPI) for intracellular polyphosphate and revealed the composition of polyphosphate granules accumulated in predominant bacteria as mostly P, Ca and Na. As a result, DAPI and PHA staining procedures could be combined with FISH to identify directly the polyphosphate- and PHA-accumulating traits of different phylogenetic groups. Members of Accumulibacter phosphatis and the novel gamma-proteobacterial group were observed to accumulate both polyphosphate and PHA. In addition, one novel rod-shaped group, closely related to coccus-shaped Tetrasphaera, and one filamentous group resembling Candidatus Nostocoidia limicola in the HGC group were found to accumulate polyphosphate but not PHA. No cellular inclusions were detected in most members of the alpha-Proteobacteria and the Cytophaga-Flavobacterium group. The diversified functional traits observed suggested that different substrate metabolisms were used by predominant phylogenetic groups in EBPR processes.  相似文献   

3.
A new microscopic method for simultaneously determining in situ the identities, activities, and specific substrate uptake profiles of individual bacterial cells within complex microbial communities was developed by combining fluorescent in situ hybridization (FISH) performed with rRNA-targeted oligonucleotide probes and microautoradiography. This method was evaluated by using defined artificial mixtures of Escherichia coli and Herpetosiphon aurantiacus under aerobic incubation conditions with added [3H]glucose. Subsequently, we were able to demonstrate the potential of this method by visualizing the uptake of organic and inorganic radiolabeled substrates ([14C]acetate, [14C]butyrate, [14C]bicarbonate, and 33Pi) in probe-defined populations from complex activated sludge microbial communities by using aerobic incubation conditions and anaerobic incubation conditions (with and without nitrate). For both defined cell mixtures and activated sludge, the method proved to be useful for simultaneous identification and analysis of the uptake of labeled substrates under the different experimental conditions used. Optimal results were obtained when fluorescently labeled oligonucleotides were applied prior to the microautoradiographic developing procedure. For single-cell resolution of FISH and microautoradiographic signals within activated sludge flocs, cryosectioned sample material was examined with a confocal laser scanning microscope. The combination of in situ rRNA hybridization techniques, cryosectioning, microautoradiography, and confocal laser scanning microscopy provides a unique opportunity for obtaining cultivation-independent insights into the structure and function of bacterial communities.  相似文献   

4.
This study used phylogenetic probes in hybridization analysis to (i) determine in situ microbial community structures in regions of a shallow sand aquifer that were oxygen depleted and fuel contaminated (FC) or aerobic and noncontaminated (NC) and (ii) examine alterations in microbial community structures resulting from exposure to toluene and/or electron acceptor supplementation (nitrate). The latter objective was addressed by using the NC and FC aquifer materials for anaerobic microcosm studies in which phylogenetic probe analysis was complemented by microbial activity assays. Domain probe analysis of the aquifer samples showed that the communities were predominantly Bacteria; Eucarya and Archaea were not detectable. At the phylum and subclass levels, the FC and NC aquifer material had similar relative abundance distributions of 43 to 65% beta- and gamma-Proteobacteria (B+G), 31 to 35% alpha-Proteobacteria (ALF), 15 to 18% sulfate-reducing bacteria, and 5 to 10% high G+C gram positive bacteria. Compared to that of the NC region, the community structure of the FC material differed mainly in an increased abundance of B+G relative to that of ALF. The microcosm communities were like those of the field samples in that they were predominantly Bacteria (83 to 101%) and lacked detectable Archaea but differed in that a small fraction (2 to 8%) of Eucarya was detected regardless of the treatment applied. The latter result was hypothesized to reflect enrichment of anaerobic protozoa. Addition of nitrate and/or toluene stimulated microbial activity in the microcosms, but only supplementation of toluene alone significantly altered community structures. For the NC material, the dominant subclass shifted from B+G to ALF, while in the FC microcosms 55 to 65% of the Bacteria community was no longer identifiable by the phylum or subclass probes used. The latter result suggested that toluene exposure fostered the proliferation of phylotype(s) that were otherwise minor constituents of the FC aquifer community. These studies demonstrated that alterations in aquifer microbial communities resulting from specific anthropogenic perturbances can be inferred from microcosm studies integrating chemical and phylogenetic probe analysis and in the case of hydrocarbon contamination may facilitate the identification of organisms important for in situ biodegradation processes. Further work integrating and coordinating microcosm and field experiments is needed to explore how differences in scale, substrate complexity, and other hydrogeological conditions may affect patterns observed in these systems.  相似文献   

5.
Acid mine drainage (AMD) microbial communities contain microbial eukaryotes (both fungi and protists) that confer a biofilm structure and impact the abundance of bacteria and archaea and the community composition via grazing and other mechanisms. Since prokaryotes impact iron oxidation rates and thus regulate AMD generation rates, it is important to analyze the fungal and protistan populations. We utilized 18S rRNA and beta-tubulin gene phylogenies and fluorescent rRNA-specific probes to characterize the eukaryotic diversity and distribution in extremely acidic (pHs 0.8 to 1.38), warm (30 to 50 degrees C), metal-rich (up to 269 mM Fe(2+), 16.8 mM Zn, 8.5 mM As, and 4.1 mM Cu) AMD solutions from the Richmond Mine at Iron Mountain, Calif. A Rhodophyta (red algae) lineage and organisms from the Vahlkampfiidae family were identified. The fungal 18S rRNA and tubulin gene sequences formed two distinct phylogenetic groups associated with the classes Dothideomycetes and Eurotiomycetes. Three fungal isolates that were closely related to the Dothideomycetes clones were obtained. We suggest the name "Acidomyces richmondensis" for these isolates. Since these ascomycete fungi were morphologically indistinguishable, rRNA-specific oligonucleotide probes were designed to target the Dothideomycetes and Eurotiomycetes via fluorescent in situ hybridization (FISH). FISH analyses indicated that Eurotiomycetes are generally more abundant than Dothideomycetes in all of the seven locations studied within the Richmond Mine system. This is the first study to combine the culture-independent detection of fungi with in situ detection and a demonstration of activity in an acidic environment. The results expand our understanding of the subsurface AMD microbial community structure.  相似文献   

6.
The bacterial community of an aerobic:anaerobic non-P removing SBR biomass fed a mixture of acetate and glucose was analysed using several 16S rRNA based methods. Populations responsible for anaerobic glucose and acetate assimilation were determined with fluorescent in situ hybridization (FISH) in combination with microautoradiography (FISH/MAR). At 'steady state' this community consisted of alpha-Proteobacteria (26%) and gamma-Proteobacteria (14%), mainly appearing as large cocci in tetrads (i.e. typical 'G-Bacteria'). Large numbers of low G+C bacteria (22%), and high G+C Gram-positive bacteria (29%) seen as small cocci in clusters or in sheets were also detected after FISH. DGGE fingerprinting of PCR amplified 16S rDNA fragments and subsequent cloning and sequencing of several of the major bands led to the identification of some of these populations. They included an organism 98% similar in its 16S rRNA sequence to Micropruina glycogenica, and ca. 76% of the high G+C bacteria responded to a probe MIC 184, designed against it. The rest responded to the KSB 531 probe designed against a high G+C clone sequence, sbr-gs28 reported in other similar systems. FISH analyses showed that both these high G+C populations were almost totally dominated by small clustered cocci. Only ca. 2% of cells were beta-Proteobacteria. None of the alpha- and gamma-Proteobacterial 'G-bacteria' responded to FISH probes designed for the 'G-Bacteria' Amaricoccus spp. or Defluvicoccus vanus. FISH/MAR revealed that not all the alpha-Proteobacterial 'G-Bacteria' could take up acetate or glucose anaerobically. Almost all of the gamma-Proteobacterial 'G-Bacteria' assimilated acetate anaerobically but not glucose, the low G+C clustered cocci only took up glucose, whereas the high G+C bacteria including M. glycogenica and the sbr-gs28 clone assimilated both acetate and glucose. All bacteria other than the low G+C small cocci and a few of the alpha-Proteobacteria accumulated PHB. The low G+C bacteria showing anaerobic glucose assimilation ability were considered responsible for the lactic acid produced anaerobically by this SBR biomass, and M. glycogenica for its high glycogen content.  相似文献   

7.
Marine planktonic archaea take up amino acids   总被引:6,自引:0,他引:6  
Archaea are traditionally thought of as "extremophiles," but recent studies have shown that marine planktonic Archaea make up a surprisingly large percentage of ocean midwater microbial communities, up to 60% of the total prokaryotes. However, the basic physiology and contribution of Archaea to community microbial activity remain unknown. We have studied Archaea from 200-m depths of the northwest Mediterranean Sea and the Pacific Ocean near California, measuring the archaeal activity under simulated natural conditions (8 to 17 degrees C, dark and aerobic [corrected]) by means of a method called substrate tracking autoradiography fluorescence in situ hybridization (STARFISH) that simultaneously detects specific cell types by 16S rRNA probe binding and activity by microautoradiography. In the 200-m-deep Mediterranean and Pacific samples, cells binding the archaeal probes made up about 43 and 14% of the total countable cells, respectively. Our results showed that the Archaea are active in the uptake of dissolved amino acids from natural concentrations (nanomolar) with about 60% of the individuals in the archaeal communities showing measurable uptake. Bacteria showed a similar proportion of active cells. We concluded that a portion of these Archaea is heterotrophic and also appears to coexist successfully with Bacteria in the same water.  相似文献   

8.
The bacterial community structure in the winter cover and pelagic zone of a high mountain lake was analyzed by in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotide probes. Cells fixed on membrane filters were hybridized with a probe specific for the domain Bacteria as well as with probes for the alpha, beta, and gamma subclasses of the class Proteobacteria and the Cytophaga-Flavobacterium group. The fraction of bacteria detectable after hybridization with the bacterial probe EUB ranged from 40 to 81% of 4(prm1),6-diamidino-2-phenylindole (DAPI) counts. The bacterial assemblage varied considerably between and within different habitats (snow, slush, and lake water) but was in most cases dominated by members of the beta subclass (6.5 to 116% of bacteria detectable with probe EUB). The sum of bacteria hybridizing with group-specific probes was usually lower than the fraction detectable with probe EUB. Image analysis was used to characterize morphology and the size-specific biomass distribution of bacterial assemblages, which clearly separated the three habitats. Although the measured secondary production parameters and the fraction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyltetrazolium chloride-reducing bacteria varied by more than an order of magnitude in the different slush and pelagic layers, detectability with the fluorescent probe EUB was constantly high. Physiological strategies of bacteria under nutrient limitation and at low temperatures are discussed in the context of the ribosome content of single cells. This study confirms the suitability of fluorescently labeled rRNA-targeted probes for the characterization of bacterial population structures even in oligotrophic habitats.  相似文献   

9.
The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C]bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying bacterial cells to heterotrophic bacteria was monitored with time by using MAR-FISH. The MAR-FISH analysis revealed that most phylogenetic groups of heterotrophic bacteria except the beta-Proteobacteria showed significant uptake of 14C-labeled microbial products. In particular, the members of the Chloroflexi were strongly MAR positive in the culture without NH4+ addition, in which nitrifying bacteria tended to decay. This indicated that the members of the Chloroflexi preferentially utilized microbial products derived from mainly biomass decay. On the other hand, the members of the Cytophaga-Flavobacterium cluster gradually utilized 14C-labeled products in the culture with NH4+ addition in which nitrifying bacteria grew. This result suggested that these bacteria preferentially utilized substrate utilization-associated products of nitrifying bacteria and/or secondary metabolites of 14C-labeled structural cell components. Our results clearly demonstrated that the coexisting heterotrophic bacteria efficiently degraded and utilized dead biomass and metabolites of nitrifying bacteria, which consequently prevented accumulation of organic waste products in the biofilm.  相似文献   

10.
This study describes the microbial community structure of three sandy sediment stations that differed with respect to median grain size and permeability in the German Bight of the Southern North Sea. The microbial community was investigated using lipid biomarker analyses and fluorescence in situ hybridization. For further characterization we determined the stable carbon isotope composition of the biomarkers. Biomarkers identified belong to different bacterial groups such as members of the Cytophaga-Flavobacterium cluster and sulfate-reducing bacteria (SRB). To support these findings, investigations using different fluorescent in situ hybridization probes were performed, specifically targeting Cytophaga-Flavobacterium, gamma-Proteobacteria and different members of the SRB. Depth profiles of bacterial fatty acid relative abundances revealed elevated subsurface peaks for the fine sediment, whereas at the other sandy sediment stations the concentrations were less variable with depth. Although oxygen penetrates deeper into the coarser and more permeable sediments, the SRB biomarkers are similarly abundant, indicating suboxic to anoxic niches in these environments. We detected SRB in all sediment types as well as in the surface and at greater depth, which suggests that SRB play a more important role in oxygenated marine sediments than previously thought.  相似文献   

11.
Sequential mRNA fluorescence in situ hybridization (mRNA FISH) and fluorescence-assisted cell sorting (SmRFF) was used for the identification of nitrite-reducing bacteria in mixed microbial communities. An oligonucleotide probe labeled with horseradish peroxidase (HRP) was used to target mRNA of nirS, the gene that encodes nitrite reductase, the enzyme responsible for the dissimilatory reduction of nitrite to nitric oxide. Clones for nirS expression were constructed and used to provide proof of concept for the SmRFF method. In addition, cells from pure cultures of Pseudomonas stutzeri and denitrifying activated sludge were hybridized with the HRP probe, and tyramide signal amplification was performed, conferring a strongly fluorescent signal to cells containing nirS mRNA. Flow cytometry-assisted cell sorting was used to detect and physically separate two subgroups from a mixed microbial community: non-fluorescent cells and an enrichment of fluorescent, nitrite-reducing cells. Denaturing gradient gel electrophoresis (DGGE) and subsequent sequencing of 16S ribosomal RNA (rRNA) genes were used to compare the fragments amplified from the two sorted subgroups. Sequences from bands isolated from DGGE profiles suggested that the dominant, active nitrite reducers were closely related to Acidovorax BSB421. Furthermore, following mRNA FISH detection of nitrite-reducing bacteria, 16S rRNA FISH was used to detect ammonia-oxidizing and nitrite-oxidizing bacteria on the same activated sludge sample. We believe that the molecular approach described can be useful as a tool to help address the longstanding challenge of linking function to identity in natural and engineered habitats.  相似文献   

12.
The ability to differentiate functional and structural diversity of bacterial communities present in activated sludges adapted to elementally (ECF) and totally (TCF) chlorine-free bleaching effluents was evaluated. Community function was evaluated through substrate utilization patterns in BiologGN microplates, and taxonomic structure was evaluated by fluorescent in situ hybridization using probes targeting the Eubacteria; the alpha, beta, and gamma subclasses of the Proteobacteria; and gram-positive bacteria with high GC content. Over 6-week sampling periods, ECF-and TCF-adapted sludge bacterial communities presented reproducible substrate utilization patterns that through principal components (PCs) analysis, separated the ECF samples from the TCF samples. Application of the fluorescent in situ hybridization technique was complicated by the intense autofluorescence of the bleaching effluent sludge samples that interfered with detection of specific hybridization signals. The most notable difference in community structure detected using the chosen set of probes was the relatively greater proportion of cells of the alpha subclass in TCF sludge (27%) than in ECF sludge (6%). Nonspecific hybridization with beta and gamma probes was relatively high, but both sludges appeared to have similar proportions of cells of the beta (20-22%) and gamma (11-12%) subclasses. The two sludges presented relatively few gram-positive cells with high GC content (<0.2% of eubacterial counts). Differences in both metabolic potential and taxonomic structure of the microbial communities in the ECF- and TCF-activated sludges were detected. The kinetics of the development of these differences in treatment plants and their relationships with treatment efficiency and production process conditions should now be evaluated.  相似文献   

13.
A new scanning electron microscopic method was developed for gaining both phylogenetic and morphological information about target microbes using in situ hybridization with rRNA-targeted oligonucleotide probes (SEM-ISH). Target cells were hybridized with oligonucleotide probes after gold labeling. Gold enhancement was used for amplification of probe signals from hybridized cells. The hybridized cells released a strong backscatter electron signal due to accumulation of gold atoms inside cells. SEM-ISH was applied to analyze bacterial community composition in freshwater samples, and bacterial cell counts determined by SEM-ISH with rRNA-targeted probes for major phyla within the domain Bacteria were highly correlated to those by fluorescent in situ hybridization (FISH). The bacterial composition on surface of river sediment particles before and after cell dispersion treatment by sonication was successfully revealed by SEM-ISH. Direct enumeration of bacterial cells on the surface of sonicated sediment particles by SEM-ISH demonstrated that members of Cytophaga-Flavobacterium existed tightly on the surface of particles. SEM-ISH allows defining the number and distribution of phylogenetically defined cells adherent to material surfaces, which is difficult in FISH, and it gives new insight into electron microscopic studies of microorganisms in their natural environment.  相似文献   

14.
Historically, Cholodny-Rossi buried glass slide techniques have been used to study the microbiota of subsurface environments, yet the bias of such a technique has not been compared against direct sand extraction using modern in situ probing. Over a period of 34 wk, four separate 4-m-deep sand columns receiving raw lake water were examined to compare direct extraction of sand filter biofilm material against in situ glass slide biofilms. Significantly different DAPI direct counts and fluorescent in situ hybridization signals for major phylogenetic groups were observed. Not only were lower proportions (P < 0.001) of EUB338-probed DAPI cells observed on in situ glass slides, but also fewer gamma-Proteobacteria (12%-21%) and more alpha-Proteobacteria (16%-33%) when compared to direct sand extracts. Hence, investigators of the microbial ecology of even simple sand biofilms must consider the inherent biases from "accepted" methods and seek further independent methods to identify those which may be most accurate.  相似文献   

15.
We analyzed changes in bacterioplankton morphology and composition during enhanced protozoan grazing by image analysis and fluorescent in situ hybridization with group-specific rRNA-targeted oligonucleotide probes. Enclosure experiments were conducted in a small, fishless freshwater pond which was dominated by the cladoceran Daphnia magna. The removal of metazooplankton enhanced protozoan grazing pressure and triggered a microbial succession from fast-growing small bacteria to larger grazing-resistant morphotypes. These were mainly different types of filamentous bacteria which correlated in biomass with the population development of heterotrophic nanoflagellates (HNF). Small bacterial rods and cocci, which showed increased proportion after removal of Daphnia and doubling times of 6 to 11 h, belonged nearly exclusively to the beta subdivision of the class Proteobacteria and the Cytophaga-Flavobacterium cluster. The majority of this newly produced bacterial biomass was rapidly consumed by HNF. In contrast, the proportion of bacteria belonging to the gamma and alpha subdivisions of the Proteobacteria increased throughout the experiment. The alpha subdivision consisted mainly of rods that were 3 to 6 microm in length, which probably exceeded the size range of bacteria edible by protozoa. Initially, these organisms accounted for less than 1% of total bacteria, but after 72 h they became the predominant group of the bacterial assemblage. Other types of grazing-resistant, filamentous bacteria were also found within the beta subdivision of Proteobacteria and the Cytophaga-Flavobacterium cluster. We conclude that the predation regimen is a major structuring force for the bacterial community composition in this system. Protozoan grazing resulted in shifts of the morphological as well as the taxonomic composition of the bacterial assemblage. Grazing-resistant filamentous bacteria can develop within different phylogenetic groups of bacteria, and formerly underepresented taxa might become a dominant group when protozoan predation is the major selective pressure.  相似文献   

16.
Decho AW  Kawaguchi T 《BioTechniques》1999,27(6):1246-1252
A novel method using excision and fixation in Nanoplast, a hydrophilic embedding resin, allows confocal imaging of natural microbial communities and their extracellular polymeric secretions (EPS) while in situ. Prestaining with fluorescent probes permits the observation of specific cellular and extracellular components. Marine stromatolite sediments were examined using this method. Optical sectioning using confocal laser scanning microscopy (CLSM) permitted high-resolution imaging through sediments. Delicate arrangements of the EPS that are associated with sedimentary microbial biofilms were imaged using a fluorescein isothiocyanate (FITC)-labeled lectin (concanavalin-A) probe. Close microspatial associations of heterotrophic bacteria cells and autotrophic cyanobacteria cells were also observed. The nanoplast resin produces no detectable autofluorescence. Further coupling of multi-photon scanning laser microscopy (2P-LSM) with a conventional single photon CLSM allowed concurrent imaging of DAPI-labeled microbial cells, FITC-labeled EPS and autofluorescent carbonate sand grains. The multi-photon infrared laser permits deep (approximately 1 mm) penetration of samples and the excitation of DAPI, which normally requires UV-excitation with minimal disturbance to samples. The unique combination of Nanoplast with fluorescent probes, CLSM and 2P-LSM allows for the preservation and imaging of natural microbial communities in their in situ state, a method easily adapted for examinations of other microbial systems.  相似文献   

17.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   

18.
Communication among Oral Bacteria   总被引:22,自引:0,他引:22       下载免费PDF全文
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

19.
Communication among oral bacteria.   总被引:6,自引:0,他引:6  
Human oral bacteria interact with their environment by attaching to surfaces and establishing mixed-species communities. As each bacterial cell attaches, it forms a new surface to which other cells can adhere. Adherence and community development are spatiotemporal; such order requires communication. The discovery of soluble signals, such as autoinducer-2, that may be exchanged within multispecies communities to convey information between organisms has emerged as a new research direction. Direct-contact signals, such as adhesins and receptors, that elicit changes in gene expression after cell-cell contact and biofilm growth are also an active research area. Considering that the majority of oral bacteria are organized in dense three-dimensional biofilms on teeth, confocal microscopy and fluorescently labeled probes provide valuable approaches for investigating the architecture of these organized communities in situ. Oral biofilms are readily accessible to microbiologists and are excellent model systems for studies of microbial communication. One attractive model system is a saliva-coated flowcell with oral bacterial biofilms growing on saliva as the sole nutrient source; an intergeneric mutualism is discussed. Several oral bacterial species are amenable to genetic manipulation for molecular characterization of communication both among bacteria and between bacteria and the host. A successful search for genes critical for mixed-species community organization will be accomplished only when it is conducted with mixed-species communities.  相似文献   

20.
The microbial communities of membrane biofilms occurring in two full-scale water purification processes employing microfiltration (MF) and reverse osmosis (RO) membranes were characterized using a polyphasic approach that employed bacterial cultivation, 16S rDNA clone library and fluorescence in situ hybridization techniques. All methods showed that the alpha-Proteobacteria was the largest microbial fraction in the samples, followed by the gamma-Proteobacteria. This suggested that members of these two groups could be responsible for the biofouling on the membranes studied. Furthermore, the microbial community structures between the MF and RO samples were considerably different in composition of the most predominant 16S rDNA clones and bacterial isolates from the alpha-Proteobacteria and only shared two common groups ( Bradyrhizobium, Bosea) out of more than 17 different bacterial groups observed. The MF and RO samples further contained Planctomycetes and Fibroacter/ Acidobacteria as the second predominant bacterial clones, respectively, and differed in minor bacterial clones and isolates. The community structure differences were mainly attributed to differences in feed water, process configurations and operating environments, such as the pressure and hydrodynamic conditions present in the water purification systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号