首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylene blue plus light mediates 8-hydroxyguanine formation in DNA   总被引:14,自引:0,他引:14  
Exposure to methylene blue (MB) plus light mediates formation of large levels of 8-hydroxyguanine in DNA. The amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG) present in DNA increased as the amount of MB concentration increased throughout the 2 to 200 microM range studied and was dependent on light exposure. As the time of light exposure increased so did the 8-OHdG content to levels of about 750 8-OHdG/10(5) deoxyguanosine after 15 min of light exposure when MB was at 20 microM. Even though previous research has demonstrated that hydroxyl free radicals formed from a variety of sources mediate 8-OHdG formation in DNA, inclusion of mannitol, superoxide dismutase, catalase, and desferal in the MB plus light experiments demonstrated that these scavengers of oxygen free radical intermediates or precursors caused either no change or an increase in the 8-OHdG content of DNA exposed to MB plus light. These results appear to rule out the direct role of oxygen free radical intermediates in the primary events involved in the MB plus light mediated formation of 8-OHdG in DNA. Oxygen was essential to cause MB plus light mediated 8-OHdG formation in DNA. It was noted that when the reaction was carried out where the deuterium oxide content had been increased to 100%, the amount of 8-OHdG formed in DNA increased about threefold over that observed when comparable reactions were carried out in pure H2O. Use of the singlet oxygen scavenger 2,5-dimethylfuran has yielded variable results on the MB plus light mediated formation of 8-OHdG in DNA. The data taken collectively clearly indicate that MB plus light mediates 8-OHdG formation in DNA. The D2O data and the requirement for oxygen suggest that singlet oxygen may be an intermediate.  相似文献   

2.
The Vir-c mutation is a virescent chloroplast mutation found in a line of plants derived from protoplast fusions between a Nicotina tabacum line and a line containing N. tabacum nuclei with Nicotiana suaveolens cytoplasm. Vir-c displays a lag period in chlorophyll accumulation and granal stack formation in young leaves. We examined total chloroplast protein in young leaves and showed the mutant contains 1.3 to 2.1 times less stromal protein, and 2.9 to 4.3 times less thylakoid protein when compared to the N. tabacum var “Turkish Samsun” control. Electrophoretic patterns of total thylakoid proteins indicated three polypeptides were specifically decreased in amount within the context of the overall reduction in thylakoid protein. Electrophoresis of thylakoid proteins synthesized by chloroplasts isolated from half-expanded leaves demonstrated that mutant chloroplasts did not synthesize a 37.5 kilodalton polypeptide which was synthesized by “Samsun” chloroplasts. A polypeptide of this molecular weight was synthesized by Vir-c chloroplasts isolated from mature leaves which had recovered the normal phenotype. Restriction digestion and electrophoresis of the mutant's chloroplast DNA produced a pattern of restriction fragments different from either N. tabacum or N. suaveolens chloroplast DNA.  相似文献   

3.
Ozone increases the permeability of isolated pea chloroplasts   总被引:2,自引:0,他引:2  
The effect of short-term exposure of chloroplasts isolated from the leaves of Pisum sativum to high concentrations of ozone was examined. The inhibitory effect of O3 on endogenous photophosphorylation was apparently related to an increased permeability of the chloroplast limiting membranes induced by ozone exposure. A 5 min treatment with 50 ppm O3 reduced the reflection coefficient of meso-erythritol from 0.84 to 0.58 and that of glycerol from 0.26 to 0.03. Such decreases in reflection coefficients indicate that ozone caused a marked increase in the permeability of the limiting membranes of the chloroplasts, which may result from an oxidation of membrane lipids. The decrease in the reflection coefficient of meso-erythritol was proportional both to ozone concentration (up to 30 ppm for 5 min of bubbling) and to time (up to 5 min at 30 ppm). Extrapolating these results to lower concentrations and longer times, ozone injury should be possible for a 2 hr exposure of plants to 0.3 ppm ozone, as is indeed the case.  相似文献   

4.
Many reactive oxygen species such as ozone, singlet oxygen, hydroxyl radical, and organic oxyradicals have been implicated in damage to plant organs and biopolymers such as chloroplasts, cell membranes, proteins, and DNA. The principal defenses against these reactive molecules and free radicals in plants include detoxifying enzymes (catalase, superoxide dismutase, etc.) and also lower molecular weight secondary products with antioxidant activity. These latter compounds include a great variety of phenolic compounds, carotenoids, nitrogenous, and sulfur-containing materials. Some of the more important mechanisms of action of the secondary compounds will be discussed, with emphasis on the use of structural and kinetic data to identify the most effective antioxidants against peroxy radical-induced damage, which is perhaps the most important of the oxidative stresses present in the usual environment of plants. © 1995 Wiley-Liss, Inc.  相似文献   

5.
We have discovered that methylene blue plus light mediates the formation of 8-OHdG in DNA. Methylene blue is one of several thiazin dyes and we report here that the other thiazin dyes tested, in combination with white light, are effective in mediating 8-OHdG formation in DNA. The effectiveness of light plus the thiazin dyes in forming 8-OHdG in DNA were as follows: methylene blue greater than azure B greater than azure A greater than toluidine blue greater than thionin. Two other compounds tested; riboflavin and fuschin acid, in combination with light, caused formation of very little, if any, 8-OHdG in DNA. Thiazin dye mediated formation of 8-OHdG in DNA was not inhibited by the spin trap alpha-phenyl-t-butyl nitrone, which supports our previous observations that oxygen free radical scavengers did not inhibit methylene blue plus light mediated 8-OHdG formation in DNA. Ascorbate addition to methylene blue plus DNA, in the absence of light, was ineffective in mediating 8-OHdG formation in DNA.  相似文献   

6.
The exposure of human granulocytes to the tumor promoter, tetradecanoylphorbolacetate (TPA), resulted in the accumulation of 8-hydroxydeoxyguanosine (8-OHdG) in the DNA of the treated cells. Hydroxyl free radicals react with DNA causing the hydroxylation of guanine at the C-8 position. The modified nucleoside (8-OHdG) cleaved from DNA, was quantitated at subpicomole levels utilizing high pressure liquid chromatography with electrochemical detection (LCED). Superoxide dismutase and catalase caused a marked decrease in the levels of 8-OHdG in the cellular DNA. The level of 8-OHdG formed by TPA stimulation of granulocytes was equivalent to one modified guanine for about every 600 possible guanines in the cellular DNA.  相似文献   

7.
《Free radical research》2013,47(4):423-428
Several diseases of prematurity are thought to be related to oxidative injury and many of the available markers are unsatisfactory. An assay was developed using HPLC with electrochemical detection for the quantitation of urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) as a proposed indicator for oxygen-derived free radical injury to DNA in preterm infants.

A median value of 3.79 pmol/mol creatinine was obtained for normal children (2–15 years old, n = 14). Urinary 8-OHdG excretion in neonates ranged from 0–99μmol/mol creatinine. There were no gestation or birthweight related differences in urinary 8-OHdG, and no correlation with urinary malondialdehyde. Mean 8-OHdG excretion increased with postnatal age (r= 0.80, p < 0.0001, n = 15), mirroring the growth velocity curve. These changes could also be due to changes in the activity of the enzyme responsible for 8-OHdG excision.

Urinary 8-OHdG levels are unlikely to accurately reflect oxygen derived free radical activity given the strength of the relationship with growth.  相似文献   

8.
Lipid peroxide (LPO) formation was remarkable when isolatedtobacco chloroplasts were bubbled with high concentrations ofozone, though the fatty acid composition and the fractionationpattern of glycolipids and phospholipids in the chloroplastlipids changed little after ozone fumigation of the leaves.Piperonyl butoxide (PB), a potent protectant against ozone injury,strongly inhibited LPO formation in ozonated chloroplasts. PBalso prevented ozone-induced decreases in the amounts of linolenicand linoleic acids in the chloroplast lipids. These resultssuggest that PB inhibition of LPO formation may be involvedin the protective mechanism against ozone phytotoxicity. However,the mode of PB action differed on some points from that of diphenylamine,which is an antioxidant and also effective against ozone injury.The mode of PB action is discussed. 1 Present address: The Central Research Institute, Japan Tobacco& Salt Public Corporation, Umegaoka, Midori-ku, Yokohama227, Japan. (Received July 5, 1976; )  相似文献   

9.
A rapid oxygraph method of studying the permeability of the envelope of isolated chloroplasts was used. The outer envelope of aqueously isolated whole spinach (Spinacia oleracea L.) chloroplasts in buffer is readily permeable to 3-phosphoglyceric acid, which induces an immediate light dependent oxygen evolution. This light dependent oxygen evolution was completely eliminated by swelling these plastids in an osmotically dilute solution. Exogenous adenosine diphosphate, but not inorganic phosphate, strongly stimulated this oxygen evolution. This indicated that the chloroplast envelope is relatively permeable to adenosine diphosphate.

Oxygen evolution and swelling studies indicated that the chloroplast envelope is relatively impermeable to NADP and to ferredoxin.

A method is described whereby the percent of whole chloroplasts present in a chloroplast preparation may be rapidly estimated.

  相似文献   

10.

Key message

The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone.

Abstract

Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.  相似文献   

11.
Ultrastructural changes in chloroplasts of tobacco plants (Nicotiana tabacum L.) with the introduced desC gene for the acyl-lipid Δ9-desaturase from the thermophilic cyanobacterium Synechococcus vulcanus were investigated during plant acclimation to cold. Control plants were transformed with an empty pGA482 binary vector. At optimum growth temperature, a decreased number of grana and thylakoids and an increased number of plastoglobules and their larger area were observed in transgenic plants when compared to control ones. In control plants, acclimation to cold (6 days at 10°C) resulted in the larger areas of chloroplasts and grana. These changes indicated starting cold-induced injuries manifested in swelling of the stroma and a slight decrease in the total number of thylakoids in the chloroplast. In contrast, transgenic plants responded to cold by reducing the chloroplast, granal, and plastoglobule areas. Meantime, the number of thylakoids per granum increased noticeably. The total number of thylakoids in the chloroplast increased from 123 to 203. It was concluded that expression of the acyl-lipid Δ9-desaturase gene in tobacco plants provided for the formation of the cell ultrastructure similar to one characteristic of cold-tolerant plants.  相似文献   

12.
Atmospheric ozone causes formation of various highly reactive intermediates (e.g. peroxyl and superoxide radicals, H2O2, etc.) in plant tissues. A plant's productivity in environments with ozone may be related to its ability to scavenge the free radicals formed. The effects of ozone on photosynthesis and some free radical scavengers were measured in the fifth emergent leaf of poplars. Clonal poplars (Populus deltoides × Populus cv caudina) were fumigated with 180 parts per billion ozone for 3 hours. Photosynthesis was measured before, during, and after fumigation. During the first 90 minutes of ozone exposure, photosynthetic rates were unaffected but glutathione levels and superoxide dismutase activity increased. After 90 minutes of ozone exposure, photosynthetic rates began to decline while glutathione and superoxide dismutase continued to increase. Total glutathione (reduced plus oxidized) increased in fumigated leaves throughout the exposure period. The ratio of GSH/GSSG also decreased from 12.8 to 1.2 in ozone exposed trees. Superoxide dismutase levels increased twofold in fumigated plants. After 4 hours of ozone exposure, the photosynthetic rate was approximately half that of controls while glutathione levels and superoxide dismutase activity remained above that of the controls. The elevated antioxidant levels were maintained 21 hours after ozone exposure while photosynthetic rates recovered to about 75% of that of controls. Electron transport and NADPH levels remained unaffected by the treatment. Hence, elevated antioxidant metabolism may protect the photosynthetic apparatus during exposure to ozone.  相似文献   

13.
Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 μmol mg−1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 μmol mg−1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mm, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 μmol mg−1 Chl. In contrast, ≥85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplast.  相似文献   

14.
Formation of 8-hydroxyguanine within calf thymus DNA has been studied after exposure to uv-H2O2 as a hydroxyl free radical generating system. Using high-pressure liquid chromatography with electrochemical detection, we measured the amount of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the enzymatically digested DNA. The 8-OHdG content of uv-exposed DNA increased linearly with increasing H2O2 levels up to 0.03%, above which the rate of increase was less than linear. All hydroxyl free radical scavengers studied (mannitol, ethanol, thiourea, and salicylate), if present in the system when DNA was exposed to uv-H2O2, caused a decrease in the amount of 8-OHdG formed. Thiourea when incubated with damaged DNA caused a loss of 8-OHdG when it was an integral part of DNA. In contrast, thiourea did not react with the nucleoside free in solution. Reduced glutathione did not cause a decrease of 8-OHdG, either when it was an integral part of DNA, or, as the free nucleoside in solution.  相似文献   

15.
Photosynthetic activity, the content of various photosynthetic pigments, and the chloroplast ultrastructure were examined in the leaves of cucumber (Cucumis sativus L.) and pea (Pisum sativum L.) plants of different ages grown under red light (600–700 nm, 100 W/m2). In pea leaves tolerant to red-light irradiation, chloroplast ultrastructure did not essentially change. In the first true leaves of cucumber plants susceptible to red-light irradiation, we observed a considerable increase in the number and size of plastoglobules, the appearance of chloroplasts lacking grana or containing only infrequent grana, and stromal thylakoids. In the upper leaves of 22-day-old cucumber plants, the chloroplast structure was essentially similar to that of the control chloroplasts in white light, and we therefore suppose that these plants have acclimated to red light.  相似文献   

16.
Potato virus Y (PVY) is an important plant virus and causes great losses every year. Viral infection often leads to abnormal chloroplasts. The first step of chloroplast division is the formation of FtsZ ring (Z-ring), and the placement of Z-ring is coordinated by the Min system in both bacteria and plants. In our lab, the helper-component proteinase (HC-Pro) of PVY was previously found to interact with the chloroplast division protein NtMinD through a yeast two-hybrid screening assay and a bimolecular fluorescence complementation (BiFC) assay in vivo. Here, we further investigated the biological significance of the NtMinD/HC-Pro interaction. We purified the NtMinD and HC-Pro proteins using a prokaryotic protein purification system and tested the effect of HC-Pro on the ATPase activity of NtMinD in vitro. We found that the ATPase activity of NtMinD was reduced in the presence of HC-Pro. In addition, another important chloroplast division related protein, NtMinE, was cloned from the cDNA of Nicotiana tabacum. And the NtMinD/NtMinE interaction site was mapped to the C-terminus of NtMinD, which overlaps the NtMinD/HC-Pro interaction site. Yeast three-hybrid assay demonstrated that HC-Pro competes with NtMinE for binding to NtMinD. HC-Pro was previously reported to accumulate in the chloroplasts of PVY-infected tobacco and we confirmed this result in our present work. The NtMinD/NtMinE interaction is very important in the regulation of chloroplast division. To demonstrate the influence of HC-Pro on chloroplast division, we generated HC-Pro transgenic tobacco with a transit peptide to retarget HC-Pro to the chloroplasts. The HC-Pro transgenic plants showed enlarged chloroplasts. Our present study demonstrated that the interaction between HC-Pro and NtMinD interfered with the function of NtMinD in chloroplast division, which results in enlarged chloroplasts in HC-Pro transgenic tobacco. The HC-Pro/NtMinD interaction may cause the formation of abnormal chloroplasts in PVY-infected plants.  相似文献   

17.
The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation‐induced genotoxicity was investigated via gain‐of‐functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast‐targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild‐type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV‐treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV‐C radiation, the dark‐grown E. coli RecA‐overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation‐induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV‐C radiation‐induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA‐overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.  相似文献   

18.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

19.
Carcinogenesis is believed to be induced through the oxidative damage of DNA, and antioxidants are expected to suppress it. So, the polyphenolic antioxidants in daily foods were investigated to see whether they protect against genetic damage by active oxygen. In the evaluation, we used a bioassay and a chemical determination, a Salmonella mutagenicity test for mutation by a N-hydroxyl radical from one of the dietary carcinogens 3-amino-1-methyl-5H-pyrido[4,3-b]indole and the formation of 8-hydroxyl (8-OHdG) from 2′-deoxyguanosine (2′-dG) in a Fenton OH-radical generating system. Thirty-one antioxidants including flavonoids were compared in terms of radical-trapping activity with bacterial DNA and 2′-dG. Antioxidants inhibited the mutation but the IC50 values were in the mM order. Against 8-OHdG formation, only α-tocopherol had a suppressive effect with an IC50 of 1.5 μM. Thus, except α-tocopherol, the dietary antioxidants did not scavenge the biological radicals faster than bacterial DNA and intact 2′-dG, indicating that they failed to prevent oxidative gene damage and probably carcinogenesis.  相似文献   

20.
The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号