首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Inorganic polyphosphate (polyP) has been identified and measured in human platelets. Millimolar levels (in terms of Pi residues) of short chain polyP were found. The presence of polyP of approximately 70-75 phosphate units was identified by 31P NMR and by urea-polyacrylamide gel electrophoresis of platelet extracts. An analysis of human platelet dense granules, purified using metrizamide gradient centrifugation, indicated that polyP was preferentially located in these organelles. This was confirmed by visualization of polyP in the dense granules using 4',6-diamidino-2-phenylindole and by its release together with pyrophosphate and serotonin upon thrombin stimulation of intact platelets. Dense granules were also shown to contain large amounts of calcium and potassium and both bafilomycin A1-sensitive ATPase and pyrophosphatase activities. In agreement with these results, when human platelets were loaded with the fluorescent calcium indicator Fura-2 acetoxymethyl ester to measure their intracellular Ca2+ concentration ([Ca2+]i), they were shown to possess a significant amount of Ca2+ stored in an acidic compartment. This was indicated by the following: 1) the increase in [Ca2+]i induced by nigericin, monensin, or the weak base, NH4Cl, in the nominal absence of extracellular Ca2 and 2) the effect of ionomycin, which could not take Ca2+ out of acidic organelles and was more effective after alkalinization of this compartment by the previous addition of nigericin, monensin, or NH4Cl. All of these characteristics of the platelet dense granules, together with their known acidity and high density (both by weight and by electron microscopy), are similar to those of acidocalcisomes (volutin granules, polyP bodies) of bacteria and unicellular eukaryotes. The results suggest that acidocalcisomes have been conserved during evolution from bacteria to humans.  相似文献   

2.
Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.  相似文献   

3.

Background

Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane.

Scope of review

Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum.

Major conclusion

Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms.

General significance

Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field.  相似文献   

4.
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species.  相似文献   

5.
The field of ciliated protozoa behaviour is reconsidered. The simple-complexity of their behaviour is seen in its basic nature and adaptive meaning. The Laboratory Conditions (LABCON) are discussed in comparison with those occurring in nature (NATCON). The nature of the arc, the behavioural element commonly performed by a ciliate, is discussed in detail. Several indexes and rates can perfectly describe the tracks of the ciliates. The behaviour can be considered as a kind of adaptive interface between the environment and the organism.  相似文献   

6.
7.
8.
9.
Shemarova IV 《Tsitologiia》2008,50(8):647-662
The review considers the mechanisms of nucleic and mitochondrial control of the life span of unicellular eukaryotes. Special attention is given to analysis of the mechanisms of functioning of telomerase complex, the mechanisms of varied expression of the genes regulating the cell cycle, and the mitochondrial retrograde pathway.  相似文献   

10.
Shemarova IV 《Tsitologiia》2007,49(3):229-242
The review summarizes current data about transduction mechanism of apoptotic signals by caspase-like enzymes and mitochondrial apoptogenic proteins in unicellular eukaryotes. The role of receptor-dependent and receptor-independent caspase cascades is rewieved. The special attention is given to evolution aspects of problem of apoptosis.  相似文献   

11.
Shemarova IV 《Tsitologiia》2008,50(8):663-670
The review considers the up to date achievements about posttranslational regulation of programmable cell events: growth, development, and apoptosis in unicellular eukaryotes mediated by histone modifications and DNA metylation. Special attention is given to the evolution aspects of the problem.  相似文献   

12.
For their protection from host cell immune defense, intracellular pathogens of eukaryotic cells developed a variety of mechanisms, including secretion systems III and IV which can inject bacterial effectors directly into eukaryotic cells. These effectors may function inside the host cell and may be posttranslationally modified by host cell machinery. Recently, prenylation was added to the list of possible posttranslational modifications of bacterial proteins. In this work we describe the current state of the knowledge about the prenylation of eukaryotic and prokaryotic proteins and prenylation inhibitors. The bioinformatics analyses suggest the possibility of prenylation for a number of Francisella genus proteins.  相似文献   

13.
ABSTRACT: BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 mum; from a coastal Mediterranean lagoon) to a warming treatment (+3[degree sign]C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.  相似文献   

14.
15.
The functional characterisation of potassium channels found in the mitochondria of plants and unicellular eukaryotes is critically discussed herein, with a focus on the ATP-sensitive potassium channel and the large-conductance Ca2+-activated potassium channel (mitoBKCa channel). The physiological functions of these channels are not completely understood. We discuss the functional connections and roles of potassium channels, uncoupling protein and alternative oxidase, three energy-dissipating systems that exist in the mitochondrial respiratory chain of plants and some unicellular eukaryotes, which include preventing the production of reactive oxygen species.  相似文献   

16.
In unicellular eukaryotes, apoptosis-like cell death occurs during development, aging and reproduction, and can be induced by environmental stresses and exposure to toxic agents. The essence of the apoptotic machinery in unicellular organisms is similar to that in mammals, but the apoptotic signal network is less complex and of more ancient origin. The review summarizes current data about key apoptotic proteins and mechanisms of the transduction of apoptotic signals by caspase-like proteases and mitochondrial apoptogenic proteins in unicellular eukaryotes. The roles of receptor-dependent and receptor-independent caspase cascades are reviewed.  相似文献   

17.
18.
Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged.  相似文献   

19.
20.
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites. In this work, we describe organelles with properties similar to acidocalcisomes in the green alga Chlamydomonas reinhardtii. Nigericin and NH(4)Cl released (45)Ca(2+) from preloaded permeabilized cells, suggesting the incorporation of a significant amount of this cation into an acidic compartment. X-ray microanalysis of the electron-dense vacuoles or polyphosphate bodies of C. reinhardtii showed large amounts of phosphorus, magnesium, calcium, and zinc. Immunofluorescence microscopy, using antisera raised against a peptide sequence of the vacuolar type proton pyrophosphatase (H(+)-PPase) of Arabidopsis thaliana which is conserved in the C. reinhardtii enzyme, indicated localization in the plasma membrane, in intracellular vacuoles, and the contractile vacuole where it colocalized with the vacuolar proton ATPase (V-H(+)-ATPase). Purification of the electron-dense vacuoles using iodixanol density gradients indicated a preferential localization of the H(+)-PPase and the V-H(+)-ATPase activities in addition to high concentrations of PP(i) and short and long chain polyphosphate, but lack of markers for mitochondria and chloroplasts. In isolated electron-dense vacuoles, PP(i)-driven proton translocation was stimulated by potassium ions and inhibited by the PP(i) analog aminomethylenediphosphonate. Potassium fluoride, imidodiphosphate, N,N'-dicyclohexylcarbodiimide, and N-ethylmaleimide also inhibited PP(i) hydrolysis in the isolated organelles in a dose-dependent manner. These results indicate that the electron-dense vacuoles of C. reinhardtii are very similar to acidocalcisomes with regard to their chemical composition and the presence of proton pumps. Polyphosphate was also localized to the contractile vacuole by 4',6-diamidino-2-phenylindole staining, suggesting, with the immunochemical data, a link between these organelles and the acidocalcisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号