首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumour necrosis factor-alpha (TNF-alpha) has been implicated as an important inflammatory mediator. In vitro, TNF-alpha is reported to activate human polymorphonuclear neutrophils (PMN), inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-alpha are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-alpha molecule, four TNF-alpha derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3-7 selected hydrophilic or hydrophobic amino acids in the original TNF-alpha genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55) or the 75 kDa (p75) TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-alpha is discussed.  相似文献   

2.
We measured the rates of utilization of hydrophobic and hydrophilic phosphate compounds in gram-negative bacteria with different surface hydrophobicities, isolated from wetland habitats. Three hydrophobic and two hydrophilic bacterial species were selected for study by measuring cell adherence to hydrocarbons. The bacteria were grown under phosphorus-limited conditions with P(infi), hydrophilic (beta)-glycerophosphate, or hydrophobic phosphatidic acid as the phosphate source. Hydrophilic bacteria grew most rapidly on P(infi), followed by (beta)-glycerophosphate. Phosphatidic acid did not support growth or did so at a much later time (40 h) than did the other phosphate treatments. Although all hydrophobic species grew well on these substrates, the rate of growth of two Acinetobacter baumannii isolates on phosphatidic acid exceeded the rate of growth on phosphate or (beta)-glycerophosphate. A membrane phospholipid and lipopolysaccharide were used as a source of phosphorus by hydrophobic species, whereas hydrophilic species could not use the membrane phospholipids and used lipopolysaccharide to a lesser extent. Besides hydrophobic interaction between cells and substrate, phosphatase activity, which was cell bound in hydrophilic species but 30 to 50% unbound in hydrophobic species, affected cell growth. Dialyzed culture supernatant containing phosphatase from hydrophobic species increased the phosphate availability to hydrophilic species. Additionally, cellular extracts from a hydrophilic species, when added to hydrophilic cells, permitted growth on hydrophobic phosphate sources. Naturally occurring amphiphilic humic acids affected the utilization of P(infi) and (beta)-glycerophosphate in bacteria with hydrophilic surfaces but did not affect hydrophobic bacteria. Our results indicate that hydrophobic phosphate sources can be used by bacteria isolated from aquatic environments as the sole phosphorus source for growth. This utilization, in part, appears to be related to cell surface hydrophobicity and extracellular enzyme production.  相似文献   

3.
Raman spectra of active Na+,K+-ATPase from pig kidney and membrane-bound products of its two-stage trypsinolysis, including alpha-subunit hydrophobic regions as well as the intact beta-subunit and hydrophobic regions of alpha- and beta-subunits, were measured to calculate the secondary structure of hydrophilic and hydrophobic regions of the enzyme. Consequent comparison demonstrated unambiguously that (i) membrane-bound hydrophobic parts of polypeptide chains of Na+,K+-ATPase subunits are in the alpha-helical conformation; (ii) essential contents of the alpha-helix as well as beta-sheet are estimated to form the hydrophilic (mainly cytoplasmic) domain of the Na+,K+-ATPase alpha-subunit; (iii) the exoplasmic hydrophilic domain of the beta-subunit is shown to include several antiparallel beta-pleated sheets and a small amount of the alpha-helix and unordered conformations. The model of the secondary structure organization of hydrophilic domains as well as 8 hydrophobic transmembrane segments of the enzyme molecule was proposed on the basis of experimental results and predictional calculations.  相似文献   

4.
The sequences of the variable regions of three monoclonal antibodies with different specificities to cholesterol monohydrate and 1,4-dinitrobenzene crystals were determined. The structures of their binding sites were then modeled, based on homology to other antibodies of known structure. Two of these antibodies were previously shown to specifically recognize each one well-defined face of one of the crystals, out of a number of crystal faces of closely related structure. The binding site of the antibody which recognizes the stepped (301) face of the cholesterol crystal is predicted to assume the shape of a step with one hydrophobic and one hydrophilic side, complementary to the corresponding crystal surface. Within the step, the hydroxyl groups of five tyrosines are located such that they can interact with the hydroxyl and water molecules on the cholesterol crystal face, while hydrophobic contacts are made between the cholesterol backbone and hydrophobic amino acid sidechains. In contrast, the modeled binding site of the antibody which recognizes the flat (101) face of 1,4-dinitrobenzene crystals is remarkably flat. It is lined by aromatic and polar residues, that can make favorable contacts with the aromatic ring and nitro groups of the dinitrobenzene molecules, respectively.  相似文献   

5.
This study elucidates the role of the protein structure in the catalysis of β-diketone cleavage at the three-histidine metal center of diketone cleaving enzyme (Dke1) by computational methods in correlation with kinetic and mutational analyses. Molecular dynamics simulations, using quantum mechanically deduced parameters for the nonheme Fe(II) cofactor, were performed and showed a distinct organization of the hydrophilic triad in the free and substrate-ligated wild-type enzyme. It is shown that in the free species, the Fe(II) center is coordinated to three histidines and one glutamate, whereas the substrate-ligated, catalytically competent enzyme-substrate complex has an Fe(II) center with three-histidine coordination, with a small fraction of three-histidine, one-glutamate coordination. The substrate binding modes and channels for the traffic of water and ligands (2,4-pentandionyl anion, methylglyoxal, and acetate) were identified. To characterize the impact of the hydrophobic protein environment around the metal center on catalysis, a set of hydrophobic residues close to the active site were targeted. The variations resulted in an up to tenfold decrease of the O(2) reduction rates for the mutants. Molecular dynamics studies revealed an impact of the hydrophobic residues on the substrate stabilization in the active site as well as on the orientations of Glu98 and Arg80, which have previously been shown to be crucial for catalysis. Consequently, the Glu98-His104 interaction in the variants is weaker than in the wild-type complex. The role of protein structure in stabilizing the primary O(2) reduction step in Dke1 is discussed on the basis of our results.  相似文献   

6.
Shaw BD  Carroll GC  Hoch HC 《Mycologia》2006,98(2):186-194
It has been shown that conidia of Phyllosticta ampelicida require attachment to a substratum to initiate germination. Furthermore this attachment occurs only on hydrophobic surfaces. This study was initiated to ascertain the breadth of this phenomenon among other species of the genus Phyllosticta. We tested 23 isolates of Phyllosticta representing at least 14 named species. These isolates were collected from North America, Asia and Africa. For 22 of the 23 isolates tested spore attachment occurred at a rate of 60-100% on hydrophobic polystyrene but at 0-5% on hydrophilic polystyrene. The one exception to the preference for a hydrophobic substratum for attachment was an unnamed species of Phyllosticta from Rhus glauca that attached less than 10% on either surface. A similar response was observed when assaying germination and appressorium formation for 17 isolates. Germination and appressorium formation for these isolates proceeded on hydrophobic polystyrene but not on nutrient agar, which is hydrophilic. In five of the tested isolates germination was high on both hydrophobic polystyrene and hydrophilic nutrient media. The isolate from Rhus glauca did not germinate appreciably on either surface. Taken together these results suggest that the requirement for conidium contact/attachment to trigger germination is pervasive to the genus Phyllosticta.  相似文献   

7.
We analyzed the total, hydrophobic, and hydrophilic accessible surfaces (ASAs) of residues from a nonredundant bank of 587 3D structure proteins. In an extended fold, residues are classified into three families with respect to their hydrophobicity balance. As expected, residues lose part of their solvent-accessible surface with folding but the three groups remain. The decrease of accessibility is more pronounced for hydrophobic than hydrophilic residues. Amazingly, Lysine is the residue with the largest hydrophobic accessible surface in folded structures. Our analysis points out a clear difference between the mean (other studies) and median (this study) ASA values of hydrophobic residues, which should be taken into consideration for future investigations on a protein-accessible surface, in order to improve predictions requiring ASA values. The different secondary structures correspond to different accessibility of residues. Random coils, turns, and beta-structures (outside beta-sheets) are the most accessible folds, with an average of 30% accessibility. The helical residues are about 20% accessible, and the difference between the hydrophobic and the hydrophilic residues illustrates the amphipathy of many helices. Residues from beta-sheets are the most inaccessible to solvent (10% accessible). Hence, beta-sheets are the most appropriate structures to shield the hydrophobic parts of residues from water. We also show that there is an equal balance between the hydrophobic and the hydrophilic accessible surfaces of the 3D protein surfaces irrespective of the protein size. This results in a patchwork surface of hydrophobic and hydrophilic areas, which could be important for protein interactions and/or activity.  相似文献   

8.
Adsorption characteristics of zein protein on hydrophobic and hydrophilic surfaces have been investigated to understand the orientation changes associated with the protein structure on a surface. The protein is adsorbed by a self-assembly procedure on a monolayer-modified gold surface. It is observed that zein shows higher affinity toward hydrophilic than hydrophobic surfaces on the basis of the initial adsorption rate followed by quartz crystal microbalance studies. Reflection absorption infrared (RAIR) spectroscopic studies reveal the orientation changes associated with the adsorbed zein films. Upon adsorption, the protein is found to be denatured and the transformation of alpha-helix to beta-sheet form is inferred. This transformation is pronounced when the protein is adsorbed on hydrophobic surfaces as compared to hydrophilic surfaces. Electrochemical techniques (cyclic voltammetry and impedance techniques) are very useful in assessing the permeability of zein film. It is observed that the zein moieties adsorbed on hydrophilic surfaces are highly impermeable in nature and act as a barrier for small molecules. The topographical features of the deposits before and after adsorption are analyzed by atomic force microscopy. The protein adsorbed on hydrophilic surface shows rod- and disclike features that are likely to be the base units for the growth of cylindrical structures of zein. The thermal stability of the adsorbed zein film has been followed by variable-temperature RAIR measurements.  相似文献   

9.
Hydrophobic folate-binding proteins (FBPs), which are only 5-10 kDa larger than 40-kDa hydrophilic FBPs, bind significant quantities of Triton X-100 micelles and elute as apparent 160-kDa species on Sephacryl S-200 gel filtration in Triton X-100. Detergent-solubilized placental membranes release a major (greater than 95%) 40-kDa hydrophilic FBP species as well as a minor apparent 160-kDa folate binding species when similarly analyzed. We tested the hypothesis that this recovery of predominantly hydrophilic FBPs was mediated by a putative hydrophobic FBP-specific placental protease. When placenta was solubilized in the presence of increasing concentrations of EDTA, there was a progressive increase in apparent 160-kDa folate binding moieties concomitant with a decrease in 40-kDa FBPs. At 20 mM EDTA, a single apparent 160-kDa folate binding species was recovered and the 40-kDa FBPs could not be detected by radioligand binding or specific radioimmunoassay. The apparent 160-kDa species specifically bound radiolabeled folates and were specifically immunoprecipitated by rabbit anti-40-kDa FBP antiserum. On 15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer to nitrocellulose and probing with anti-40-kDa FBP antiserum, the apparent 160-kDa FBPs electrophoresed as 45-kDa species. Detergent binding studies indicated that apparent 160-kDa FBPs were hydrophobic, thus accounting for the molecular weight discrepancy in gel filtration in Triton X-100 versus sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The EDTA-mediated inhibition of conversion of hydrophobic FBPs to hydrophilic FBPs by protease was reversed in a dose-dependent manner by Mg2+. If this protease is physiologically relevant, it could play an important regulatory role in folate transport by influencing the net number of hydrophobic FBPs on the cell surface.  相似文献   

10.
较系统地研究了溶液中离子型表面活性剂与蛋白质相互作用时电导率的变化,并根据实验现象得出表面活性剂与蛋白质作用的两种模式- 疏水作用模式和电荷作用模式。表面活性剂采用疏水作用模式与蛋白质结合时,蛋白质的二硫键逐一断裂,三级结构逐渐打开,电导率曲线出现一些小“平台”;采用电荷作用模式吸附蛋白质时,首先形成疏水复合体,产生白色浑浊,随离子型表面活性剂浓度的增加,疏水复合体转变成亲水复合体,白色浑浊完全溶解。在有的体系中,两种作用并不是界限分明,它们可以同时表现出来。并将实验结果做为研究蛋白质所引起的乳化及破乳机理的依据  相似文献   

11.
较系统地研究了溶液中离子型表面活性剂与蛋白质相互作用时电导率的变化,并根据实验现象,得出表面活性剂与蛋白质作用的两种模式-疏水作用模式和电荷作用模式。表面活性剂采用疏水作用模式与蛋白质结合时,蛋白质的二硫键逐一断裂,三级结构逐渐打开,电导率曲线出现一些小“平台”,采用电荷作用模式吸附蛋白质时,首先形成疏水复合体,产生白色浑浊,随离子型表面活性剂浓度的增加,疏水复合体转变成亲水复合体,白色浑浊  相似文献   

12.
To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.  相似文献   

13.
Kuan Chun Chaw 《Biofouling》2013,29(7):611-619
The behavioural response of cypris larvae from A. amphitrite (=Balanus amphitrite) exploring three model glass surfaces is quantified by close-range microscopy. Step length and step duration measurements reveal a response to both surface properties and flow. Without flow, 2-day-old cyprids took larger steps with shorter step duration on hydrophilic glass surfaces (bare and NH2-treated) vs hydrophobic glass (CH3-treated). These parameters suggest a more detailed, local inspection of hydrophobic surfaces and a more extensive exploration for hydrophilic surfaces. Cyprids under flow took longer steps and exhibited shorter probing times on hydrophobic glass. On hydrophilic glass, cyprids increased their step duration under flow. This active response is attributed to drag and lift forces challenging the cyprids' temporary anchoring to the substratum. Seven-day-old cyprids showed almost no discrimination between the model surfaces. Microscopic-scale observation of cyprid exploration is expected to provide new insights into interactions between cyprids and surfaces.  相似文献   

14.
Hydropathic anti-complementarity of amino acids based on the genetic code   总被引:15,自引:0,他引:15  
An interesting pattern in the genetic code has been discovered. Codons for hydrophilic and hydrophobic amino acids on one strand of DNA are complemented by codons for hydrophobic and hydrophilic amino acids on the other DNA strand, respectively. The average tendency of codons for "uncharged" (slightly hydrophilic) amino acids is to be complemented by codons for "uncharged" amino acids.  相似文献   

15.
The amino-acid sequence of bovine myelin lipophilin (proteolipid apoprotein, Folch-protein) has been completed. Lipophilin is a 276 amino acid residues containing, extremely hydrophobic membrane protein with molecular mass 30,000 Da. The sequence determination was based on automated Edman degradation of four tryptophan and four cyanogen bromide fragments and of proteolytic peptides of complete lipophilin as well as the fragments obtained by chemical cleavage. Four additional sequences were determined which led to the completion of the primary structure. Lipophilin is esterified at threonine-198 by long chain fatty acids (palmitic, stearic and oleic acid). The attachment site has been established at the same threonine residue in three different peptides isolated from thermolysinolytic, papainolytic and chymotrypsinolytic hydrolysates. This threonine residue is part of a hydrophilic segment of lipophilin. The covalent fatty acyl bond is being discussed together with important structural and functional properties of this membrane protein which can be derived from sequence information. New separation and purification methods of hydrophobic and hydrophilic polypeptides for this sequence determination (fractional solubilization, silica gel exclusion, high-performance liquid chromatography) had to be elaborated as indispensable tools. They are generally applicable to the structural analysis of hydrophobic membrane proteins. Four long (26, 29, 40 and 36 residues) and one medium long (12 residues) hydrophobic segments are separated by four predominantly positively and one negatively charged hydrophilic segments. On the basis of structural data a model for the membrane integration of lipophilin is proposed.  相似文献   

16.
The influence of macromolecules other than lipopolysaccharide on the hydrophobic properties ofPasteurella multocida was investigated by assessing cell surface hydrophobicity (CSH) after experimentally modifying surfaces of various strains. CSH of hydrophobic variants was enhanced by growth on blood-supplemented medium and mechanical shearing, whereas chloramphenicol, oxytetracycline, trypsin, and pronase E treatments decreased CSH. No such modifications were observed for hydrophilic strains. Microscopic observations revealed hydrophilic strains to be heavily encapsulated in contrast to hydrophobic strains. Repeated subculturing reduced encapsulation with a concomitant increase in CSH for one hydrophilic strain while exerting no changes in the other hydrophilic strain examined. Hyaluronidase removal of capsular material from a serotype A strain resulted in increased CSH; subsequent exposure to pronase E resulted in partial restoration of hydrophilicity. These data suggest the encapsulation of hydrophilicP. multocida strains masks a relatively hydrophobic surface that is conferred, at least in part, by the presence of one or more surface-exposed proteins common to both hydrophilic and hydrophobic variants.  相似文献   

17.
A fundamental characteristic of soluble globular protein structure is a hydrophobic core and protein exterior comprised predominantly of hydrophilic residues. This distribution of amino acid residue hydrophobicity, from protein interior to exterior, has recently been profiled with the use of hydrophobic moments. The calculations enable comparison of the radial hydrophobicity distribution of different proteins and had revealed two features common to 30 proteins of diverse size and structure. One, a global feature, is the overall shape of the second-order ellipsoidal hydrophobic moment. The second, a specific feature, is a quasi-invariant hydrophobic-ratio of distances. Both features are dependent upon the rates of increase, from protein interior to exterior, of the accumulated numbers of hydrophobic and hydrophilic amino acid residues. These rates can be simulated simply with a two-component nucleation model of protein hydrophobicity. The model provides insight into the origin of the shape of the observed hydrophobic moment profiles and of the observed range of hydrophobic ratios. Consistent with observation, it is shown that a relatively wide range of hydrophobic and hydrophilic rates of increase yield a relatively narrow range of hydrophobic ratios. Furthermore, the model identifies one factor, the decrease in residue density with increasing distance from the protein interior, that is critical in providing the range of values that is comparable with the observed range.  相似文献   

18.
A procedure is described for in-gel tryptic digestion of proteins that allows the direct analysis of eluted peptides in electrospray ionization (ESI) mass spectrometers without the need of a postdigestion desalting step. It is based on the following principles: (a) a thorough desalting of the protein in-gel before digestion that takes advantage of the excellent properties of acrylamide polymers for size exclusion separations, (b) exploiting the activity of trypsin in water, in the absence of inorganic buffers, and (c) a procedure for peptide extraction using solvents of proven efficacy with highly hydrophobic peptides. Quality of spectra and sequence coverage are equivalent to those obtained after digestion in ammonium bicarbonate for hydrophilic proteins detected with Coomassie blue, mass spectrometry-compatible silver or imidazole-zinc but are significantly superior for highly hydrophobic proteins, such as membrane proteins with several transmembrane domains. ATPase subunit 9 (GRAVY 1.446) is a membrane protein channel, lipid-binding protein for which both the conventional in-gel digestion protocol and in solution digestion failed. It was identified with very high sequence coverage. Sample handling after digestion is notably simplified as peptides are directly loaded into the ESI source without postdigestion processing, increasing the chances for the identification of hydrophobic peptides.  相似文献   

19.
The hydrophilic and hydrophobic properties of single cells of natural bacterioplankton communities were determined using a recently developed staining method combined with confocal laser scanning microscopy and advanced image analysis. On an average, about 50% of the bacterial cell area was covered by hydrophobic and only 16% by hydrophilic properties, while about 72% was covered by the genome. However, the size of these properties was independent of the bacterial cell size. Bacterial hydrophobicity was positively correlated with ambient NH(4)(+) concentrations and negatively correlated with overall bacterial abundance. The expression of hydrophilicity was more dynamic. Over the spring phytoplankton bloom, the bacterioplankton ratio(phil/phob) repeatedly reached highest values shortly before peaks in bacterioplankton abundance were observed, indicating a direct and fast response of bacterial surface properties, especially hydrophilicity, to changing environmental conditions. Compared to bacterial strains, recently studied with the same method, cells of marine bacterioplankton communities are much smaller and less frequently covered by hydrophobic or hydrophilic properties. While the percentage area covered by the genome is essentially the same, the percentage area covered by hydrophobic or hydrophilic properties is much smaller.  相似文献   

20.
New non-fouling tubes are developed and their influence on the adhesion of neuroproteins is studied. Recombinant prion proteins are considered as a single component representative of hydrophobic proteins. Samples are stored for 24?h at 4?°C in tubes coated with two different coatings: poly(N-isopropylacrylamide) as a hydrophilic surface and a plasma-fluorinated coating as a hydrophobic one. The protein adhesion is monitored by ELISA tests, XPS and confocal microscopy. It appears that the highest recovery of recombinant prion protein in the liquid phase is obtained with the hydrophilic surface while the hydrophobic character of the storage tube induces an important amount of biological loss. However, the recovery is not complete even for tubes coated with poly(N-isopropylacrylamide).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号