首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-ketoacyl-acyl carrier protein (ACP) synthase enzymes join short carbon units to construct fatty acyl chains by a three-step Claisen condensation reaction. The reaction starts with a trans thioesterification of the acyl primer substrate from ACP to the enzyme. Subsequently, the donor substrate malonyl-ACP is decarboxylated to form a carbanion intermediate, which in the third step attacks C1 of the primer substrate giving rise to an elongated acyl chain. A subgroup of beta-ketoacyl-ACP synthases, including mitochondrial beta-ketoacyl-ACP synthase, bacterial plus plastid beta-ketoacyl-ACP synthases I and II, and a domain of human fatty acid synthase, have a Cys-His-His triad and also a completely conserved Lys in the active site. To examine the role of these residues in catalysis, H298Q, H298E and six K328 mutants of Escherichia colibeta-ketoacyl-ACP synthase I were constructed and their ability to carry out the trans thioesterification, decarboxylation and/or condensation steps of the reaction was ascertained. The crystal structures of wild-type and eight mutant enzymes with and/or without bound substrate were determined. The H298E enzyme shows residual decarboxylase activity in the pH range 6-8, whereas the H298Q enzyme appears to be completely decarboxylation deficient, showing that H298 serves as a catalytic base in the decarboxylation step. Lys328 has a dual role in catalysis: its charge influences acyl transfer to the active site Cys, and the steric restraint imposed on H333 is of critical importance for decarboxylation activity. This restraint makes H333 an obligate hydrogen bond donor at Nepsilon, directed only towards the active site and malonyl-ACP binding area in the fatty acid complex.  相似文献   

2.
A Witkowski  A K Joshi  Y Lindqvist  S Smith 《Biochemistry》1999,38(36):11643-11650
beta-Ketoacyl synthases involved in the biosynthesis of fatty acids and polyketides exhibit extensive sequence similarity and share a common reaction mechanism, in which the carbanion participating in the condensation reaction is generated by decarboxylation of a malonyl or methylmalonyl moiety; normally, the decarboxylation step does not take place readily unless an acyl moiety is positioned on the active-site cysteine residue in readiness for the ensuing condensation reaction. Replacement of the cysteine nucleophile (Cys-161) with glutamine, in the beta-ketoacyl synthase domain of the multifunctional animal fatty acid synthase, completely inhibits the condensation reaction but increases the uncoupled rate of malonyl decarboxylation by more than 2 orders of magnitude. On the other hand, replacement with Ser, Ala, Asn, Gly, and Thr compromises the condensation reaction without having any marked effect on the decarboxylation reaction. The affinity of the beta-ketoacyl synthase for malonyl moieties, in the absence of acetyl moieties, is significantly increased in the Cys161Gln mutant compared to that in the wild type and is similar to that exhibited by the wild-type beta-ketoacyl synthase in the presence of an acetyl primer. These results, together with modeling studies of the Cys --> Gln mutant from the crystal structure of the Escherichia coli beta-ketoacyl synthase II enzyme, suggest that the side chain carbonyl group of the Gln-161 can mimic the carbonyl of the acyl moiety in the acyl-enzyme intermediate so that the mutant adopts a conformation analogous to that of the acyl-enzyme intermediate. Catalysis of the decarboxylation of malonyl-CoA requires the dimeric form of the Cys161Gln fatty acid synthase and involves prior transfer of the malonyl moiety from the CoA ester to the acyl carrier protein domain and subsequent release of the acetyl product by transfer back to a CoA acceptor. These results suggest that the role of the Cys --> Gln beta-ketoacyl synthases found in the loading domains of some modular polyketide synthases likely is to act as malonyl, or methylmalonyl, decarboxylases that provide a source of primer for the chain extension reactions catalyzed by associated modules containing fully competent beta-ketoacyl synthases.  相似文献   

3.
OleA catalyzes the condensation of fatty acyl groups in the first step of bacterial long-chain olefin biosynthesis, but the mechanism of the condensation reaction is controversial. In this study, OleA from Xanthomonas campestris was expressed in Escherichia coli and purified to homogeneity. The purified protein was shown to be active with fatty acyl-CoA substrates that ranged from C(8) to C(16) in length. With limiting myristoyl-CoA (C(14)), 1 mol of the free coenzyme A was released/mol of myristoyl-CoA consumed. Using [(14)C]myristoyl-CoA, the other products were identified as myristic acid, 2-myristoylmyristic acid, and 14-heptacosanone. 2-Myristoylmyristic acid was indicated to be the physiologically relevant product of OleA in several ways. First, 2-myristoylmyristic acid was the major condensed product in short incubations, but over time, it decreased with the concomitant increase of 14-heptacosanone. Second, synthetic 2-myristoylmyristic acid showed similar decarboxylation kinetics in the absence of OleA. Third, 2-myristoylmyristic acid was shown to be reactive with purified OleC and OleD to generate the olefin 14-heptacosene, a product seen in previous in vivo studies. The decarboxylation product, 14-heptacosanone, did not react with OleC and OleD to produce any demonstrable product. Substantial hydrolysis of fatty acyl-CoA substrates to the corresponding fatty acids was observed, but it is currently unclear if this occurs in vivo. In total, these data are consistent with OleA catalyzing a non-decarboxylative Claisen condensation reaction in the first step of the olefin biosynthetic pathway previously found to be present in at least 70 different bacterial strains.  相似文献   

4.
Feng WY  Austin TJ  Chew F  Gronert S  Wu W 《Biochemistry》2000,39(7):1778-1783
The mechanism of orotidine 5'-monophosphate decarboxylase (OMP decarboxylase, ODCase) was studied using the decarboxylation of orotic acid analogues as a model system. The rate of decarboxylation of 1,3-dimethylorotic acid and its analogues as well as the stability of their corresponding carbanion intermediates was determined. The results have shown that the stability of the carbanion intermediate is not a critical factor in the rate of decarboxylation. On the other hand, the reaction rate is largely dependent on the equilibrium constant for the formation of a zwitterion. Based on these results, we have proposed a new mechanism in which ODCase catalyzes the decarboxylation of OMP by binding the substrate in a zwitterionic form and providing a destabilizing environment for the carboxylate group of OMP.  相似文献   

5.
Experimental probes of the acidity of weak carbon acids have been developed and used to determine the carbon acid pK(a)s of glycine, glycine derivatives and iminium ion adducts of glycine to the carbonyl group, including 5'-deoxypyridoxal (DPL). The high reactivity of the DPL-stabilized glycyl carbanion towards nucleophilic addition to both DPL and the glycine-DPL iminium ion favors the formation of Claisen condensation products at enzyme active sites. The formation of the iminium ion between glycine and DPL is accompanied by a 12-unit decrease in the pK(a) of 29 for glycine. The complicated effects of formation of glycine iminium ions to DPL and other aromatic and aliphatic aldehydes and ketones on carbon acid pK(a) are discussed. These data provide insight into the contribution of the individual pyridine ring substituents to the catalytic efficiency of DPL. It is suggested that the 5'-phosphodianion group of PLP may play an important role in enzymatic catalysis of carbon deprotonation by providing up to 12 kcal/mol of binding energy that is utilized to stabilize the transition state for the enzymatic reaction. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.  相似文献   

6.
BACKGROUND: beta-ketoacyl-acyl carrier protein synthase (KAS) I is vital for the construction of the unsaturated fatty acid carbon skeletons characterizing E. coli membrane lipids. The new carbon-carbon bonds are created by KAS I in a Claisen condensation performed in a three-step enzymatic reaction. KAS I belongs to the thiolase fold enzymes, of which structures are known for five other enzymes. RESULTS: Structures of the catalytic Cys-Ser KAS I mutant with covalently bound C10 and C12 acyl substrates have been determined to 2.40 and 1.85 A resolution, respectively. The KAS I dimer is not changed by the formation of the complexes but reveals an asymmetric binding of the two substrates bound to the dimer. A detailed model is proposed for the catalysis of KAS I. Of the two histidines required for decarboxylation, one donates a hydrogen bond to the malonyl thioester oxo group, and the other abstracts a proton from the leaving group. CONCLUSIONS: The same mechanism is proposed for KAS II, which also has a Cys-His-His active site triad. Comparison to the active site architectures of other thiolase fold enzymes carrying out a decarboxylation step suggests that chalcone synthase and KAS III with Cys-His-Asn triads use another mechanism in which both the histidine and the asparagine interact with the thioester oxo group. The acyl binding pockets of KAS I and KAS II are so similar that they alone cannot provide the basis for their differences in substrate specificity.  相似文献   

7.
The role of fatty acid and polyamine in the interaction of AMP deaminase (EC 3.5.4.6)-ammonium system with glycolysis was investigated using permeabilized yeast cells. (1) The addition of fatty acid inhibited the activity of AMP deaminase in situ, resulting in a decrease in the total adenylate pool depletion, and in the recovery of the adenylate energy charge. (2) The addition of fatty acid resulted in an indirect decrease in the activity of phosphofructokinase (EC 2.7.1.11) through a reduced level of ammonium ion; fatty acid itself did not inhibit phosphofructokinase activity in the presence of excess ammonium ion. (3) Spermine protected AMP deaminase from inhibition by fatty acid: the increased ammonium level enhanced phosphofructokinase activity, glycolytic flux and the recovery of the energy charge. In contrast, alkali metals, which are also activators of AMP deaminase had little effect on the inhibition of the enzyme. The inhibition of glycolysis by fatty acid and its reversal by polyamine can be accounted for by the changes in ammonium ion through the action of AMP deaminase-ammonium system, and the physiological relevance is discussed.  相似文献   

8.
OleA is a thiolase superfamily enzyme that has been shown to catalyze the condensation of two long-chain fatty acyl-coenzyme A (CoA) substrates. The enzyme is part of a larger gene cluster responsible for generating long-chain olefin products, a potential biofuel precursor. In thiolase superfamily enzymes, catalysis is achieved via a ping-pong mechanism. The first substrate forms a covalent intermediate with an active site cysteine that is followed by reaction with the second substrate. For OleA, this conjugation proceeds by a nondecarboxylative Claisen condensation. The OleA from Xanthomonas campestris has been crystallized and its structure determined, along with inhibitor-bound and xenon-derivatized structures, to improve our understanding of substrate positioning in the context of enzyme turnover. OleA is the first characterized thiolase superfamily member that has two long-chain alkyl substrates that need to be bound simultaneously and therefore uniquely requires an additional alkyl binding channel. The location of the fatty acid biosynthesis inhibitor, cerulenin, that possesses an alkyl chain length in the range of known OleA substrates, in conjunction with a single xenon binding site, leads to the putative assignment of this novel alkyl binding channel. Structural overlays between the OleA homologues, 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase and the fatty acid biosynthesis enzyme FabH, allow assignment of the two remaining channels: one for the thioester-containing pantetheinate arm and the second for the alkyl group of one substrate. A short β-hairpin region is ordered in only one of the crystal forms, and that may suggest open and closed states relevant for substrate binding. Cys143 is the conserved catalytic cysteine within the superfamily, and the site of alkylation by cerulenin. The alkylated structure suggests that a glutamic acid residue (Glu117β) likely promotes Claisen condensation by acting as the catalytic base. Unexpectedly, Glu117β comes from the other monomer of the physiological dimer.  相似文献   

9.
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 ? structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.  相似文献   

10.
Branched long-chain fatty acids of the iso and anteiso series are synthesized in many bacteria from the branched-chain alpha-keto acids of valine, leucine, and isoleucine after their decarboxylation followed by chain elongation. Two distinct branched-chain alpha-keto acid (BCKA) and pyruvate decarboxylases, which are considered to be responsible for primer synthesis, were detected in, and purified in homogenous form from Bacillus subtilis 168 strain by procedures including ammonium sulfate fractionation and chromatography on ion exchange, reversed-phase, and gel absorption columns. The chemical and catalytic properties of the two decarboxylases were studied in detail. The removal of BCKA decarboxylase, using chromatographic fractionation, from the fatty acid synthetase significantly reduced its activity. The synthetase activity was completely lost upon immunoprecipitation of the decarboxylase. The removal of pyruvate decarboxylase by the above two methods, however, did not affect any activity of the fatty acid synthetase. Thus, BCKA decarboxylase, but not pyruvate decarboxylase, is essential for the synthesis of branched-chain fatty acids. The very high affinity of BCKA decarboxylase toward branched-chain alpha-keto acids is responsible for its function in fatty acid synthesis.  相似文献   

11.
Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These alpha-alkyl, beta-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C(24)-C(26) fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The beta-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg(46) revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg(161) --> Ala substitution. Our structural studies suggested that His(258), previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys(122).  相似文献   

12.
The dehydrogenase/decarboxylase (E1b) component of the 4 MD human branched-chain alpha-ketoacid dehydrogenase complex (BCKDC) is a thiamin diphosphate (ThDP)-dependent enzyme. We have determined the crystal structures of E1b with ThDP bound intermediates after decarboxylation of alpha-ketoacids. We show that a key tyrosine residue in the E1b active site functions as a conformational switch to reduce the reactivity of the ThDP cofactor through interactions with its thiazolium ring. The intermediates do not assume the often-postulated enamine state, but likely a carbanion state. The carbanion presumably facilitates the second E1b-catalyzed reaction, involving the transfer of an acyl moiety from the intermediate to a lipoic acid prosthetic group in the transacylase (E2b) component of the BCKDC. The tyrosine switch further remodels an E1b loop region to promote E1b binding to E2b. Our results illustrate the versatility of the tyrosine switch in coordinating the catalytic events in E1b by modulating the reactivity of reaction intermediates.  相似文献   

13.
The proposed active-site base Cys-378 of thiolase, responsible for deprotonation of acetyl-CoA, has been converted to a less acidic residue Ser-378 by mutagenesis. Comparison of the CD spectra and dimethyl suberimidate cross-linking experiments of the wild type, mutant Ser-378, and Gly-378 enzymes indicated that there have been no major conformational changes. The Ser-378 enzyme retains 0.1% of the Vmax of wild type in the direction of acetoacetyl-CoA thiolytic cleavage and 0.07% of the Vmax in the Claisen condensation direction. Analysis of the acetyl S-enzyme intermediate partitioning, that is capture of the acetyl enzyme by 1) the thiolate of coenzyme A relative to 2) the C-2 carbanion of acetyl-CoA, is changed to favor reaction 2 in the case of the Ser-378 mutant enzyme.  相似文献   

14.
beta-Ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, also called acetoacetyl-ACP synthase) encoded by the fabH gene is thought to catalyze the first elongation reaction (Claisen condensation) of type II fatty acid synthesis in bacteria and plant plastids. However, direct in vivo evidence that KAS III catalyzes an essential reaction is lacking, because no mutant organism deficient in this activity has been isolated. We report the first bacterial strain lacking KAS III, a fabH mutant constructed in the Gram-positive bacterium Lactococcus lactis subspecies lactis IL1403. The mutant strain carries an in-frame deletion of the KAS III active site region and was isolated by gene replacement using a medium supplemented with a source of saturated and unsaturated long-chain fatty acids. The mutant strain is devoid of KAS III activity and fails to grow in the absence of supplementation with exogenous long-chain fatty acids demonstrating that KAS III plays an essential role in cellular metabolism. However, the L. lactis fabH deletion mutant requires only long-chain unsaturated fatty acids for growth, a source of long-chain saturated fatty acids is not required. Because both saturated and unsaturated fatty acids are required for growth when fatty acid synthesis is blocked by biotin starvation (which prevents the synthesis of malonyl-CoA), another pathway for saturated fatty acid synthesis must remain in the fabH deletion strain. Indeed, incorporation of [1-14C]acetate into fatty acids in vivo showed that the fabH mutant retained about 10% of the fatty acid synthetic ability of the wild-type strain and that this residual synthetic capacity was preferentially diverted to the saturated branch of the pathway. Moreover, mass spectrometry showed that the fabH mutant retained low levels of palmitic acid upon fatty acid starvation. Derivatives of the fabH deletion mutant strain were isolated that were octanoic acid auxotrophs consistent with biochemical studies indicating that the major role of FabH is production of short-chain fatty acid primers. We also confirmed the essentiality of FabH in Escherichia coli by use of a plasmid-based gene insertion/deletion system. Together these results provide the first genetic evidence demonstrating that FabH conducts the major condensation reaction in the initiation of type II fatty acid biosynthesis in both Gram-positive and Gram-negative bacteria.  相似文献   

15.
Benzoylformate decarboxylase (BFD) enhances the rate of decarboxylation of its key intermediate compared to the nonenzymic reaction by a factor of about 106. It has been proposed that desolvation into a hydrophobic environment will lower the reaction barrier in TDP-dependent decarboxylases. The competition of thiamin thiazolone diphosphate (TTDP) with the cofactor thiamin diphosphate (TDP) provides a dynamic indication of the relative hydrophobicity of the cofactor binding site. BFD binds the more polar TDP tightly in the presence of excess TTDP. Therefore, desolvation would not be likely to occur during catalysis. Unlike TDP enzymes that have electron acceptors as substrates, decarboxylases require protonation to produce the precursor to the aldehyde product. A mechanism involving an associated acid that traps the carbanion generated upon C–C bond breaking will permit diffusional separation of carbon dioxide and generate the appropriate precursor to the product aldehdye. This would also account for avoidance of a competitive reaction. Hasson’s detailed structure of BFD shows a highly polar active site with histidines in the vicinity of the substrate. Reports of a reduction of kcat to near the nonenzymic rate without a large effect on Km upon specific replacement of these histidines with alanine fit this alternative. In TDP enzymes involving oxidation or condensation, an electrophilic substrate or second cofactor will be bound (and no proton will be required). This will acquire the electron density of the carbanion itself. In such cases, protonated side chains are not functional while hydrophobic environments would promote the internal transfer.  相似文献   

16.
Streptomyces griseus contains the srs operon, which is required for phenolic lipid biosynthesis. The operon consists of srsA, srsB, and srsC, which encode a type III polyketide synthase, an O-methyltransferase, and a flavoprotein hydroxylase, respectively. We previously reported that the recombinant SrsA protein synthesized 3-(13'-methyltetradecyl)-4-methylresorcinol, using iso-C(16) fatty acyl-coenzyme A (CoA) as a starter substrate and malonyl-CoA and methylmalonyl-CoA as extender substrates. An in vitro SrsA reaction using [(13)C(3)]malonyl-CoA confirmed that the order of extender substrate condensation was methylmalonyl-CoA, followed by two extensions with malonyl-CoA. Furthermore, SrsA was revealed to produce an alkylresorcylic acid as its direct product rather than an alkylresorcinol. The functional SrsB protein was produced in the membrane fraction in Streptomyces lividans and used for the in vitro SrsB reaction. When the SrsA reaction was coupled, SrsB produced alkylresorcinol methyl ether in the presence of S-adenosyl-l-methionine (SAM). SrsB was incapable of catalyzing the O-methylation of alkylresorcinol, indicating that alkylresorcylic acid was the substrate of SrsB and that SrsB catalyzed the conversion of alkylresorcylic acid to alkylresorcinol methyl ether, namely, by both the O-methylation of the hydroxyl group (C-6) and the decarboxylation of the neighboring carboxyl group (C-1). O-methylated alkylresorcylic acid was not detected in the in vitro SrsAB reaction, although it was presumably stable, indicating that O-methylation did not precede decarboxylation. We therefore postulated that O-methylation was coupled with decarboxylation and proposed that SrsB catalyzed the feasible SAM-dependent decarboxylative methylation of alkylresorcylic acid. To the best of our knowledge, this is the first report of a methyltransferase that catalyzes decarboxylative methylation.  相似文献   

17.
Rishavy MA  Cleland WW 《Biochemistry》2000,39(16):4569-4574
Orotidine 5'-monophosphate shows a (15)N isotope effect of 1.0036 at N-1 for decarboxylation catalyzed by orotidine 5'-monophosphate decarboxylase. Picolinic acid shows a (15)N isotope effect of 0.9955 for decarboxylation in ethylene glycol at 190 degrees C, while N-methyl picolinic acid shows a (15)N isotope effect of 1.0053 at 120 degrees C. The transition state for enzymatic decarboxylation of orotidine 5'-monophosphate resembles the transition state for N-methyl picolinic acid in that no bond order changes take place at N-1. This rules out enolization to give a quaternary nitrogen at N-1 in the enzymatic mechanism and suggests a carbanion intermediate stabilized by simple electrostatic interaction with Lys-93. The driving force for the reaction appears to be ground-state destabilization resulting from charge repulsion between the carboxyl of the substrate and Asp-91.  相似文献   

18.
The role of fatty acid and citrate on the interaction of the AMP deaminase (EC 3.5.4.6) reaction with glycolysis was investigated using permeabilized yeast cells. (a) Linolenate and citrate inhibited glycolytic flux and the recovery of the adenylate energy charge; however, linolenate remarkably retarded the depletion of the total adenylate pool, which was not at all affected by the addition of citrate. (b) Linolenate inhibited AMP deaminase activity in situ, resulting in the subsequent decrease in ammonium production, which reduced the activity of 6-phosphofructokinase (EC 2.7.1.11), whereas linolenate itself had no ability to inhibit the phosphofructokinase activity in the presence of excess ammonium concentration. (c) Citrate inhibited the activity of phosphofructokinase in situ in the presence and absence of ammonium ion, followed by an inhibition of glycolysis; however, AMP deaminase activity was not inhibited by citrate. The inhibition of glycolysis by fatty acids can be accounted for by the lowered activity of phosphofructokinase as a result of the decreased level of ammonium ion through the inhibition of the AMP deaminase reaction by these ligands, whereas the effect of citrate on glycolysis is a direct inhibition of phosphofructokinase without affecting the activity of AMP deaminase. Fatty acid and citrate, a principal metabolic product of fatty acid oxidation, can be responsible for the control of glycolysis in two different manners.  相似文献   

19.
通过对葡萄糖氧化过程和软脂酸氧化过程的分析,厘清生物氧化过程中的脱羧、脱氢、加水、电子传递等过程的内在逻辑联系,并以C原子周围化学键的变化为基础,分析糖类化合物和脂类化合物被氧化的内在规律,找到利用糖类和脂类化合物的分子结构,推导氧化反应产物的方法。  相似文献   

20.
Song J  Jordan F 《Biochemistry》2012,51(13):2795-2803
The bacterial pyruvate dehydrogenase complex carries out conversion of pyruvate to acetyl-coenzyme A with the assistance of thiamin diphosphate (ThDP), several other cofactors, and three principal protein components, E1-E3, each present in multiple copies. The E2 component forms the core of the complexes, each copy consisting of variable numbers of lipoyl domains (LDs, lipoic acid covalently amidated at a lysine residue), peripheral subunit binding domains (PSBDs), and catalytic (or core) domains (CDs). The reaction starts with a ThDP-dependent decarboxylation on E1 to an enamine/C2α? carbanion, followed by oxidation and acetyl transfer to form S-acetyldihydrolipoamide E2, and then transfer of this acetyl group from the LD to coenzyme A on the CD. The dihydrolipoamide E2 is finally reoxidized by the E3 component. This report investigates whether the acetyl group is passed from the LD to the CD in an intra- or interchain reaction. Using an Escherichia coli E2 component having a single LD, two types of constructs were prepared: one with a Lys to Ala substitution in the LD at the Lys carrying the lipoic acid, making E2 incompetent toward post-translational ligation of lipoic acid and, hence, toward reductive acetylation, and the other in which the His believed to catalyze the transthiolacetylation in the CD is substituted with A or C, the absence of His rendering it incompetent toward acetyl-CoA formation. Both kinetic evidence and mass spectrometric evidence support interchain transfer of the acetyl groups, providing a novel model for the presence of multiples of three chains in all E2 components, and their assembly in bacterial enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号