首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Growing rabbits were infused for up to 10 h with labelled proline, tyrosine and leucine to achieve plateau conditions within body free pools, for [3H]proline infusion, blood free-proline specific radioactivity remained constant after about 1 h. For individual animals, type-I- and type-III-collagen precursors were isolated by precipitation with (NH4)2SO4 and DEAE-cellulose chromatography. Experiments where 3H- and 14C-labelled proline and tyrosine were infused concurrently for different periods of time showed that type I procollagen reached plateau specific radioactivity within 3 h and 90% of the plateau value after 2 h infusion, corresponding to a calculated apparent t 1/2 of less than 26 min. Plateau values for type I procollagen were taken as precursor amino acid pool specific radioactivities. The type-III-collagen-precursor fractions consistently showed lower rates of label incorporation and, by assuming that both type I and type III collagens are synthesized from the same amino acid pools, kinetic analysis revealed an apparent t 1/2 for the isolated type-III-collagen precursors of 3.9 h. For proline, there were large variations between animals in the ratio between the precursor pool for collagen synthesis and the skin homogenate free pool (0.31 +/- 0.13, mean +/- S.D.), so that collagen-synthesis rates based solely on total tissue free-pool values for proline are subject to large and inconsistent errors.  相似文献   

2.
The relationships of the specific radioactivities of leucine in serum, leucine acylated to tRNA and leucine in procollagen I, procollagen III and total protein in lungs of unanaesthetized young male rats in vivo were assessed as a function of time during constant intravenous infusion of radiolabelled leucine. The specific radioactivity of free leucine in plasma reached a steady-state plateau value within 30 min of initiation of [3H]leucine infusion. Leucine acylated to tRNA isolated from lungs had the same specific radioactivity as free serum leucine. Leucine in procollagen I rapidly achieved a specific radioactivity equal to that of serum leucine and leucyl-tRNA, indicating that serum leucine and leucyl-tRNA isolated from total lung were in rapid equilibrium with the precursor leucine pool for procollagen I synthesis. On the basis of leucyl-tRNA or free serum leucine as the precursor, half-times of fractional conversion of procollagen I and III were calculated as 9 and 38 min respectively. The incorporation of leucine into mixed lung proteins calculated from the tracer studies was 6.8 mumol/day for the first 30 min of the infusion, after which the calculated rate increased to 15.0 mumol/day. This apparent increase correlated with the appearance of rapidly labelled plasma proteins trapped in the lungs. On the basis of short infusions lasting 30 min or less, followed by vascular perfusion of the lung, the average fractional synthesis rate of mixed pulmonary proteins in young male rats was 20%/day.  相似文献   

3.
Methods for measurement of rates of collagen synthesis in vivo have thus far been technically difficult and often subject to quite large errors. In this paper a simplified method is described for obtaining synthesis rates of collagen and non-collagen proteins, for tissues of rabbits. This involves an intravenous injection of [3H]proline, administered with a large dose of unlabelled proline, and measurement of the specific radioactivity of proline and hydroxyproline in body tissues up to 3 h later. The specific radioactivity of [3H]proline in plasma and the tissue free pools rises rapidly to a plateau value which is maintained for at least 2 h, when the specific radioactivity of the type I collagen precursors, isolated from the skin, was similar to that of the plasma and tissue-free pool. Furthermore, over this period, the increase in the specific radioactivity of proline in collagen and non-collagen protein was linear with respect to time. These results suggest that the large dose of proline floods the precursor pools for protein synthesis, and that this effect can be maintained for quite long periods of time. Such kinetics greatly simplified the method for obtaining collagen synthesis rates in vivo, which were calculated for lung, heart, skin and skeletal muscle, and shown to be quite rapid, ranging between about 3 and 10%/day. The lung was a particularly metabolically active tissue, with synthesis rates of about 10%/day for collagen and 35%/day for total non-collagen proteins, indicating rapid turnover of both intracellular and extracellular proteins of this tissue.  相似文献   

4.
A combination of dodecylsulphate/polyacrylamide gel electrophoresis and fluorography has been used to quantify the synthesis of type I and type III collagens by periodontal ligament in situ and periodontal-ligament fibroblasts in vitro. The separation of 14C-labelled collagen alpha chains was achieved by introducing an interrupted reduction step, and the total radioactivity in the alpha-chain bands related to the fluorographic response by a series of standard curves. From these curves an accurate assessment of the relative amounts of type I and III collagen synthesized could be made. The same system also allowed the synthesis and processing of the respective procollagens to be analyzed. For the study in vivo, 200-g male rats were injected with 2 mCi [14C]glycine and killed 0.5-6 h later. Periodontal ligament was dissected from the mandibular molars and the newly-synthesized collagens extracted with 0.45 M sodium chloride. In the study in vitro, confluent monkey periodontal-ligament fibroblasts were cultured in the presence of [14C]proline and [14C]glycine. Analysis of labelled collagens showed a rapid conversion of type I procollagen to collagen but type III collagen was recovered as a procollagen intermediate both in vitro and in vivo. Analysis of duplicate samples after pepsin digestion showed type III collagen synthesis to comprise 15% of the total collagen synthesized in vivo and 20% in early subcultures in vitro. However, the proportion of type III synthesized by the fibroblasts decreased on subculturing. The data demonstrate that fibroblasts in vitro retain the basic characteristics of collagen synthesis and procollagen processing found in vivo, but the overall phenotypic expression of the cells is not stable in culture.  相似文献   

5.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45-55]. Procollagen production rates were readily determined by this method using 5 to 20 microCi [3H]proline and approximately 10(6) cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/microgram DNA . h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   

6.
7.
A technique of derivatizing proline and 4-hydroxyproline with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole was used to measure the radioactivities, concentrations and specific activities of proline and hydroxyproline. The technique was used to study the conditions of procollagen synthesis in cultured human foreskin fibroblasts. Procollagen synthesis appeared to be independent of the proline concentration in the medium, in the presence of glutamine, when monitored by the assay of non-dialyzable hydroxyproline, but not when monitored by [14C]proline incorporation. In the absence of unlabelled proline added to labelled proline in the medium, the specific activity of the secreted procollagen did not reach a plateau over a 24-h period. When the medium was supplemented with glutamine, glutamic acid, or aspartic acid, both the radioactivity and concentration of intracellular free proline decreased. Pyrrolidone-2-carboxylic acid and ornithine both induced a slight increase in concentration of the intracellular free proline. Glutamine competed with [14C]proline for incorporation into prolyl-tRNA and procollagen, independently of free intracellular proline, and it stimulated the biosynthesis of procollagen (expressed as non-dialyzable hydroxyproline) by a factor of 2.3.  相似文献   

8.
9.
Bleomycin is a chemotherapeutic agent sometimes associated with pulmonary fibrosis and skin lesions in patients undergoing treatment. We examined the mechanisms of increased collagen deposition on bleomycin-induced fibrosis by incubating human lung and skin fibroblast cultures with [14C]proline; the synthesis of [14C]hydroxyproline relative to DNA or cell protein was taken as an index of procollagen formation. Procollagen synthesis by lung cells in the presence of 0.1 and 1.0 microgram/ml bleomycin was significantly increased and similar results were obtained with skin fibroblasts. The relative synthesis of genetically distinct types of collagen was measured by isolating the newly synthesized type I and type III procollagens by DEAE-cellulose chromatography. The proportion of type III procollagen of total newly synthesized procollagen in control lung fibroblast cultures was 17.4 +/0 0.6% (mean +/- S.E.) while the corresponding value in cells incubated in 1 microgram/ml bleomycin was 12.5 +/- 0.6% (n = 6, P < 0.01). Similar results were obtained when the ratios of newly synthesized type I and type III collagens were estimated by interrupted polyacrylamide disc gel electrophoresis in sodium dodecyl sulfate after a limited proteolytic digestion with pepsin. The results indicate that the increased procollagen synthesis induced by bleomycin in fibroblast cultures is predominantly directed towards the synthesis of type I procollagen.  相似文献   

10.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45–55]. Procollagen production rates were readily determined by this method using 5 to 20 μCi [3H]proline and approximately 106 cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/μg DNA · h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   

11.
Selective decrease of type I collagen synthesis in Fraser mice skin   总被引:1,自引:0,他引:1  
Quantification and biosynthesis of type I and type III collagens were determined in skin of control and Fraser mice (CatFraser mutation), which exhibit a genetically determined cataract. Skin organ cultures were labelled with [3H]proline. Pepsin-solubilized collagens were studied using three different approaches: (a) differential salt precipitation at neutral pH, followed by SDS-polyacrylamide gel electrophoresis; (b) differential salt precipitation at acid pH followed by SDS-polyacrylamide gel electrophoresis. (c) CNBr peptide analysis. These methods gave consistent and reproducible results, indicating a selective decrease of type I collagen in Fraser mouse skin as compared to control mouse skin. Metabolic labelling of skin organ cultures showed a decreased specific radioactivity of hydroxy[3H]proline in type I collagen of Fraser mouse skin. The concordant results of these experiments suggest a genetically determined alteration of interstitial collagen metabolism in the Fraser mutation apparently specifically concerning the expression of type I collagen gene(s).  相似文献   

12.
There is evidence that immobilization causes a decrease in total collagen synthesis in skeletal muscle within a few days. In this study, early immobilization effects on the expression of prolyl 4-hydroxylase (PH) and the main fibrillar collagens at mRNA and protein levels were investigated in rat skeletal muscle. The right hindlimb was immobilized in full plantar flexion for 1, 3, and 7 days. Steady-state mRNAs for alpha- and beta-subunits of PH and type I and III procollagen, PH activity, and collagen content were measured in gastrocnemius and plantaris muscles. Type I and III procollagen mRNAs were also measured in soleus and tibialis anterior muscles. The mRNA level for the PH alpha-subunit decreased by 49 and 55% (P < 0.01) in gastrocnemius muscle and by 41 and 39% (P < 0.05) in plantaris muscle after immobilization for 1 and 3 days, respectively. PH activity was decreased (P < 0.05-0.01) in both muscles at days 3 and 7. The mRNA levels for type I and III procollagen were decreased by 26-56% (P < 0.05-0.001) in soleus, tibialis anterior, and plantaris muscles at day 3. The present results thus suggest that pretranslational downregulation plays a key role in fibrillar collagen synthesis in the early phase of immobilization-induced muscle atrophy.  相似文献   

13.
New Zealand White rabbits were infused with [3H]tyrosine for periods of 5--6 h and then different methods of extraction were applied for the purification of the main muscle proteins and protein fractions. Myosin (I), prepared from salt extraction of muscle mince, consistently had a higher specific radioactivity than did myosin (II), isolated by dissociation of actomyosin. Actins (IA) and (IB), extracted from acetone-dried powders prepared by different treatments of myosin-extracted muscle mince, gave specific radioactivities approx. 0.6 that of myosin (I) and 0.7 that of myosin(II). Actin (II), isolated by dissociation of actomyosin, had a specific radioactivity similar to that of myosin (II) from the same source, but higher than those of actins (IA) and (IB). The differences between the specific radioactivities of the proteins, in particular actin, purified by the various methods, are attributed to the loss of newly synthesized material of high specific radioactivity during the initial extraction procedures. It is suggested that actin (II) and myosin (II) are representative preparations for the total population of each protein and that, on this basis, myosin and actin have similar rates of synthesis. Total muscle protein, myofibrils, actomyosin and sarcoplasm were all found to have very similar specific radioactivities at the end of a 6 h infusion.  相似文献   

14.
Guinea-pig dermis was digested with pepsin and the solubilized collagen molecules separated by differential salt precipitation at pH 7.5. Differences in subunit composition and amino acid analysis were noted between type I and type III collagen. Incorporation of radioactive proline into the developing foetus enabled isolation of labelled type I and type III collagens. Comparison of the specific activity of the isolated collagen molecules showed that type III collagen had a high specific activity in the early stages of foetal development, which decreased dramatically during foetal development. The specific activity of pepsin-solubilized type I collagen remained fairly constant during foetal development.  相似文献   

15.
Summary The aim of this study was to assess and compare the accumulation and distribution of newly synthesized type I and III collagens in usual interstitial pneumonia (UIP) and pulmonary sarcoidosis. Lung biopsies from 10 patients with UIP and 13 patients with sarcoidosis were investigated by immunohistochemical technique and mRNA in situ hybridization. The antibodies for the aminoterminal propeptide of type I procollagen and the aminoterminal propeptide of type III procollagen (PINP and PIIINP, respectively) were used. When compared to healthy lung, levels of type I pN- and type III pN-collagens were increased in both of these disorders. Type I procollagen was mostly present as intracellular spots in newly formed fibrosis in UIP while type III pN-collagen was expressed extracellularly underneath metaplastic alveolar epithelium. Type I procollagen was present intracellularly within and around the granulomas of sarcoidosis, whereas type III pN-collagen was expressed extracellularly, mainly around the granulomas. mRNAs of both collagens colocalized with the precursor proteins. We conclude that the expression of precursor proteins and mRNA of type I and type III collagens is increased in UIP and sarcoidosis, reflecting mainly active synthesis of these collagens in different areas of the lung.  相似文献   

16.
1. The collagen hydroxyproline in rat liver was composed of 3.5% neutral-soluble collagen, 4.9% acid-soluble collagen and 91.6% insoluble collagen. In labelling studies with [(14)C]proline in vitro, the specific radioactivities of neutral-soluble, acid-soluble and insoluble collagens in rat liver were found to be 233000, 69000 and 830d.p.m./mumol of hydroxyproline respectively after 1h. 2. During subacute carbon tetrachloride poisoning the hepatic content of insoluble collagen markedly increased, whereas those of soluble collagens did not change. During recovery from subacute poisoning hepatic contents of soluble collagens were markedly decreased. 3. After 8 weeks of carbon tetrachloride poisoning the specific radioactivities of hepatic soluble collagens increased, while that of insoluble collagen decreased. During recovery from subacute poisoning, the specific radioactivities of soluble collagens decreased to the normal range and that of insoluble collagen further decreased. 4. Hepatic collagenolytic activity solubilizing insoluble collagen, which differs from mammalian collagenase, decreased under the conditions of the subacute poisoning and also during recovery from subacute poisoning.  相似文献   

17.
NH2-terminal extension peptides of type I and type III procollagens were isolated from dermatosparactic and normal fetal calfskin, respectively. Cell culture experiments showed that the globular domains of the tested procollagen peptides were biologically active but that peptides from the helical region of collagen had no effect. The peptides were added to the incubation medium of calf fibroblasts along with radioactive precursor amino acids, and the amount of newly synthesized collagen was determined. The experiments indicated that procollagen peptides exerted a feedback-like inhibitory effect specific for the synthesis of collagen. Neither degradation of collagen, hydroxylation of collagen alpha chains, nor synthesis of noncollagenous proteins were affected. Synthesis of type II collagen by calf chondrocytes was not reduced. In addition, it was shown that procollagen peptides from calf were equally effective when added to human fibroblast cultures, an observation that could be of considerable medical interest.  相似文献   

18.
By immunofluorescence analyses, we have determined that Type III procollagen, Type III collagen, and B and C chains of basement membrane collagen are associated with preimplantation mouse embryos. Type III collagen and procollagen appear to be associated with embryos at the 4-cell stage and beyond, whereas antibodies to B and C collagen chains bind to 2-cell and later embryos. All of these collagen types are detected in increasing amounts as embryos develop in a defined medium, indicating that the embryo is capable of their synthesis. By the blastocyst stage, the collagens are primarily localized intercellularly. Cells of the inner cell mass (ICM) also bind collagen antibodies. When isolated ICMs become two-layered, both the inner presumptive ectoderm layer and the outer primitive endoderm layer react with antibodies to Type III collagen and procollagen. The endoderm cells also react avidly with antibodies to B- and C-chain collagens. Preimplantation embryos and ICMs fail to react with antibodies to Types I and II collagen. During peri-implantation stages, blastocysts continue to react with antibodies to Type III and basement membrane collagens. There is no obvious relationship between the intensity of immunofluorescence and the change in the blastocyst surface from nonadhesive to adhesive. Furthermore, blastocysts prevented from undergoing implantation-related events in utero and in vitro react extensively with collagen antibodies. Blastocyst surface collagens might, nevertheless, play a role in implantation by undergoing organizational changes.  相似文献   

19.
Biosynthesis of skin collagens in normal and diabetic mice.   总被引:4,自引:0,他引:4       下载免费PDF全文
P Kern  M Moczar    L Robert 《The Biochemical journal》1979,182(2):337-345
Synthesis of collagens in vitro was studied on minced mouse skins incubated with [3H]-proline in organ-culture conditions. A comparative study was carried out on genetically diabetic mice (KK strain) and control mice (Swiss strain). After incubation, neutral-salt-soluble and acid-soluble collagens were extracted. The insoluble dermis was digested by pepsin and type I and type III collagens separated by differential precipitation in neutral salt solutions. Type I and Type III collagens were characterized by ion-exchange and molecular-sieve chromatography, amino acid analysis and by the characterization of CNBr peptides. In diabetic-mouse skin, the relative proportion of type III collagen was significantly higher than in control-mouse skin. The incorporation of radioactively labelled proline into hydroxyproline of type III collagen was significantly faster in diabetic-mouse skin than in control-mouse skin.No significant modifications in the total collagen content of the skin or of their rates of synthesis were observed between the two strains. Alteration in the ratio of type III to type I collagen in the diabetic-mouse skin can be interpreted as a sign of alteration of the regulation of collagen biosynthesis and may be related to the structural alterations observed in the diabetic intercellular matrix.  相似文献   

20.
Collagen synthesis was monitored in cultures of rabbit arterial smooth muscle cells (SMC). Both the rate of collagen synthesis per cell and collagen synthesis as a percent of total protein synthesis were measured at specific intervals from 1 to 14 days after inoculation of smooth muscle cells. The proportions of types I and III collagen present in the conditioned incubation medium and in the cell layer were also examined. After inoculation the cells displayed population expansion typical of SMC in which growth slowed but did not cease after the cells attained confluence. Collagen synthesis rates, expressed as [14C]hydroxyproline per cell, were eight-fold higher in preconfluent cells. In these cultures collagen accounted for more than 20% of the newly synthesized, 14C-labeled protein present as trichloroacetic acid (TCA)-insoluble material in 24 h culture media. In post-confluent cultures, this percentage was reduced to about 7% of the total protein synthesized. Synthesis rates of both collagen and non-collagen protein decreased with increasing time after inoculation. However, the rate of decline of collagen synthesis was three times greater than that seen for non-collagen protein. Early cultures synthesized relatively more type I than type III procollagen. The type I to type III ratio was highest at day 3 and declined after that time to day 14. While the synthesis of both types decreased with increasing age, type I declined at a greater rate resulting in a predominance of type III procollagen secretion by older cultures. We conclude that protein synthesis in general and collagen synthesis in particular are quantitatively and qualitatively dependent upon the growth stage of SMC in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号