首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin light chain kinase (MLCK) was partially purified from the lower eukaryote Physarum polycephalum. The activity to phosphorylate Physarum myosin was maximal in the absence of Ca2+ and decreased with an increase in Ca2+ concentration with a microM-level Kd. The Ca-binding protein contained in the MLCK preparation was purified to homogeneity. The native protein had a molecular mass of 75 kDa, while under denaturing conditions, it was 38 kDa. Ca-dependent changes in the intensities of intrinsic fluorescence showed that the Kd of the protein for Ca2+ was also in the microM-range. Our results suggest that the Ca-binding protein would play a key role in the effects of Ca2+ in the MLCK preparation.  相似文献   

2.
We successfully synthesized full-length and the mutant Physarum myosin and heavy meromyosin (HMM) constructs associated with Physarum regulatory light chain and essential light chain (PhELC) using Physarum myosin heavy chain in Sf-9 cells, and examined their Ca(2+)-mediated regulation. Ca(2+) inhibited the motility and ATPase activities of Physarum myosin and HMM. The Ca(2+) effect is also reversible at the in vitro motility of Physarum myosin. We demonstrated that full-length myosin increases the Ca(2+) inhibition more effectively than HMM. Furthermore, Ca(2+) did not affect the motility and ATPase activities of the mutant Physarum myosin with PhELC that lost Ca(2+)-binding ability. Therefore, we conclude that PhELC plays a critical role in Ca(2+)-dependent regulation of Physarum myosin.  相似文献   

3.
ATP-dependent interactions between myosin and actin in the lower eukaryote, Physarum polycephalum, are inhibited by micromolar levels of Ca2+. This inhibition is mediated by the binding of Ca2+ to myosin, the phosphorylation of which is required if Ca2+ is to inhibit the activities of myosin (Kohama, K., Trends Pharmacol. Sci. 11, 433-435 (1990)). As the first step to examine whether Ca2+ also regulates phosphorylation in the actomyosin system, we purified myosin light chain kinase (MLCK) of 55 kDa almost to homogeneity. The MLCK activity was high whether or not Ca2+ was present. However, a Ca(2+)-dependent inhibitory factor (CIF) purified from Physarum (Okagaki et al., Biochem. Biophys. Res. Commun. 176, 564-570 (1991)) was shown to reduce the MLCK activity in a Ca(2+)-dependent manner. Using crude preparations, not only MLCK but also myosin heavy chain kinase and actin kinase were shown to be inhibited by Ca2+ half-maximally at micromolar levels. Since CIF is the only Ca(2+)-binding protein in the preparations, we propose that this inhibitory Ca(2+)-regulation of the kinases for actomyosin is mediated by CIF.  相似文献   

4.
Actin-modulating activity was analysed with the 16,131-dalton calcium-binding light chain (CaLc, Kobayashi et al. (1988) J. Biol. Chem. 263, 305-313) of Physarum myosin, which is under an inhibitory Ca-control (Kohama and Kendrick-Jones (1986) J. Biochem. 99, 1433-1446). When skeletal muscle actin was polymerized in the presence of CaLc and Ca2+, increases in both viscosity and birefringence were reduced under high shear conditions. However, CaLc did not inhibit actin polymerization under no or low shearing forces, which was demonstrated by a variety of methods including fluorescence intensity measurements using pyrenyl actin. We propose that actin polymerized in the presence of CaLc and Ca2+ is easily fragmented under high shearing forces to produce the changes in viscosity and birefringence.  相似文献   

5.
In order to examine the involvement of troponin-linked Ca(2+)-regulation, in addition to well-known myosin-linked Ca(2+)-regulation, in the contraction of molluscan striated muscle, myofibrils from Ezo-giant scallop striated muscle were desensitized to Ca(2+) by removing both myosin regulatory light chain and troponin C by treatment with a strong divalent cation chelator, CDTA. The ATPase level in the desensitized myofibrils was about half the maximum level in intact myofibrils regardless of the Ca(2+)-concentration at 25 and 15 degrees C. In the absence of Ca(2+), the ATPase of the desensitized myofibrils was suppressed by myosin regulatory light chain but not affected by troponin C at either temperature. The ATPase was activated at higher Ca(2+)-concentrations by both myosin regulatory light chain and troponin C, but the activating effects of these two proteins were affected differently by temperature. The activation of ATPase by myosin regulatory light chain was much greater than that by troponin C at 25 degrees C, whereas the activation by troponin C was much greater than that by myosin regulatory light chain at 15 degrees C. The maximum activation was only obtained in the presence of both myosin regulatory light chain and troponin C at these temperatures. These findings strongly suggest that the contraction of scallop striated muscle is regulated through both myosin-linked and troponin-linked Ca(2+)-regulation, and that the troponin-linked Ca(2+)-regulation is more significant at lower temperature.  相似文献   

6.
Actin-activated ATPase activity of myosin from Physarum polycephalum decreases when it binds Ca2+ and increases when it loses Ca2+. This Ca-inhibition is observed with phosphorylated myosin [Kohama, K. (1990) Trend, Pharmacol. Sci. 11, 433-435]. The activity of dephosphorylated myosin remained at a low level both in the presence and absence of Ca2+, although Ca(2+)-binding ability was much the same as that of the phosphorylated myosin. The effect of phosphorylation has been studied at a conventional actin concentration, which is comparable with that of myosin by weight. When the concentration of actin was increased by 10 times, the dephosphorylated myosin became actin-activatable in the absence of Ca2+, and Ca-inhibition was recovered. As actin exists quite abundantly in non-muscle cells of Physarum, myosin phosphorylation plays virtually no role in regulating actin-myosin-ATP interaction in vivo. Physiologically the interaction may be regulated by Ca2+ by binding to and subsequent release from myosin. Latex beads coated by either phosphorylated or dephosphorylated myosin moved ATP-dependently on the actin cables of Characeae cells to the same extent in the absence of Ca2+, but the movement was abolished by increasing Ca2+. When the interaction was examined by monitoring the movement of actin filaments on myosin fixed on a coverslip, the movement and Ca-inhibition of the movement were detected with phosphorylated, not dephosphorylated, myosin [Okagaki, T., Higashi-Fujime, S., & Kohama, K. (1989) J. Biochem. 106, 955-957].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Myosin was rapidly prepared from the slime mould, Physarum polycephalum to a high level of homogeneity (greater than 95%), in a high yield (about 10 mg/100 g tissue) and in a phosphorylated state (about 5 mol phosphate/mol of 500,000 Mr myosin). Actin activated the Mg-ATPase activity of this myosin in the absence of Ca2+ about 30-fold, and this actin-activated ATPase activity was reduced to about 20% of the original activity when Ca2+ concentration was increased to 50 microM, i.e., the actin-myosin-ATP interactions show Ca-inhibition. The Ca2+ concentration giving half-maximum inhibition was 1-3 microM. The Ca-inhibition was clearly observed at physiological concentrations of Mg2+ but was obscured at both lower and higher concentrations of Mg2+. The Ca-inhibitory effect on ATP hydrolysis by actomyosin reconstituted from skeletal actin and Physarum myosin was quick and reversible. Ca-binding measurement showed that myosin bound Ca2+ with half-maximal binding at 2 microM Ca2+ and maximum binding of 2 mol per mol myosin, indicating that Ca2+ may inhibit the ATPase activity by binding to myosin. The involvement of this myosin-linked regulatory system in the Ca2+ -control of cytoplasmic streaming is discussed.  相似文献   

8.
Myosin regulatory light chain (RLC) phosphorylation in skeletal and cardiac muscles modulates Ca(2+)-dependent troponin regulation of contraction. RLC is phosphorylated by a dedicated Ca(2+)-dependent myosin light chain kinase in fast skeletal muscle, where biochemical properties of RLC kinase and phosphatase converge to provide a biochemical memory for RLC phosphorylation and post-activation potentiation of force development. The recent identification of cardiac-specific myosin light chain kinase necessary for basal RLC phosphorylation and another potential RLC kinase (zipper-interacting protein kinase) provides opportunities for new approaches to study signaling pathways related to the physiological function of RLC phosphorylation and its importance in cardiac muscle disease.  相似文献   

9.
The contractile state of smooth muscle is regulated primarily by the sarcoplasmic (cytosolic) free Ca2+ concentration. A variety of stimuli that induce smooth muscle contraction (e.g., membrane depolarization, alpha-adrenergic and muscarinic agonists) trigger an increase in sarcoplasmic free [Ca2+] from resting levels of 120-270 to 500-700 nM. At the elevated [Ca2+], Ca2+ binds to calmodulin, the ubiquitous and multifunctional Ca(2+)-binding protein. The interaction of Ca2+ with CaM induces a conformational change in the Ca(2+)-binding protein with exposure of a site(s) of interaction with target proteins, the most important of which in the context of smooth muscle contraction is the enzyme myosin light chain kinase. The interaction of calmodulin with myosin light chain kinase results in activation of the kinase that catalyzes phosphorylation of myosin at serine-19 of each of the two 20-kDa light chains (native myosin is a hexamer composed of two heavy chains (230 kDa each) and two pairs of light chains (one pair of 20 kDa each and the other pair of 17 kDa each)). This simple phosphorylation reaction triggers cycling of myosin cross-bridges along actin filaments and the development of force. Relaxation of the muscle follows removal of Ca2+ from the sarcoplasm, whereupon calmodulin dissociates from myosin light chain kinase regenerating the inactive kinase; myosin is dephosphorylated by myosin light chain phosphatase(s), whereupon it dissociates and remains detached from the actin filament and the muscle relaxes. A substantial body of evidence has been accumulated in support of this central role of myosin phosphorylation-dephosphorylation in the regulation of smooth muscle contraction. However, a wide range of physiological and biochemical studies supports the existence of additional, secondary Ca(2+)-dependent mechanisms that can modulate or fine-tune the contractile state of the smooth muscle cell. Three such mechanisms have emerged: (i) the actin-, tropomyosin-, and calmodulin-binding protein, calponin; (ii) the actin-, myosin-, tropomyosin-, and calmodulin-binding protein, caldesmon; and (iii) the Ca(2+)- and phospholipid-dependent protein kinase (protein kinase C).  相似文献   

10.
从多头绒泡菌中纯化了肌球蛋白,并对其亚基组成及ATP酶性质进行了研究。该肌球蛋白是由一种重链(225kD)和两种轻链(20kD,17.5kD)组成的大分子,其亚基之比为HC:LC1:LC2=2:4:2。兔肌F-肌动蛋白能较大激活粘菌肌球蛋白ATP酶活性,Ca~(2+)离子也能提高其活性,Mg~(2+)离子无明显影响。钒酸盐,碘乙酸,对氯汞苯甲酸对其ATP酶活性有显著抑制作用。  相似文献   

11.
Myosin was isolated from amoebae of Physarum polycephalum and compared with myosin from plasmodia, another motile stage in the Physarum life cycle. Amoebal myosin contained heavy chains (Mr approximately 220,000), phosphorylatable light chains (Mr 18,000), and Ca2+-binding light chains (Mr 14,000) and possessed a two-headed long-tailed shape in electron micrographs after rotary shadow casting. In the presence of high salt concentrations, myosin ATPase activity increased in the following order: Mg-ATPase activity less than K-EDTA-ATPase activity less than Ca-ATPase activity. In the presence of low salt concentrations, Mg-ATPase activity was activated approximately 9-fold by skeletal muscle actin. This actin-activated ATPase activity was inhibited by micromolar levels of Ca2+. Amoebal myosin was indistinguishable from plasmodial myosin in ATPase activities and molecular shape. However, the heavy chain and phosphorylatable light chains of amoebal myosin could be distinguished from those of plasmodial myosin in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peptide mapping, and immunological studies, suggesting that these are different gene products. Ca2+-binding light chains of amoebal and plasmodial myosins were found to be identical using similar criteria, supporting our hypothesis that the Ca2+-binding light chain plays a key role in the inhibition of actin-activated ATPase activity in Physarum myosins by micromolar levels of Ca2+.  相似文献   

12.
Equilibrium-binding studies at 4 degrees C show that, in the instance of crayfish, troponin C contains only one Ca-binding site with an affinity in the range of physiological free [CA2+] (K = 2 X 10(5) M-1). At physiological levels of Mg2+, this site does not bind Mg2+. In the complexes of troponin C-troponin I, troponin and troponin-tropomyosin, the regulatory Ca-specific site exhibits a 10- to 20-fold higher affinity (K = 2-4 X 10(6) M-1). The latter affinity is reduced to that of troponin C upon incorporation of the troponin-tropomyosin complex into the actin filament (regulated actin), as determined at 4 degrees C by the double isotope technique. The Ca-binding constant is again shifted to a higher value (7 X 10(6) M-1) when regulated actin is associated with nucleotide-free myosin. Both crayfish myofibrils and rabbit actomyosin regulated by crayfish troponin-tropomyosin display a steep rise in ATPase activity with [Ca2+]. Comparison of the pCa/ATPase relationship and the Ca-binding properties at 25 degrees C for the crayfish troponin-regulated actomyosin indicates that while the threshold [Ca2+] for activation corresponds to the range of [Ca2+] where the regulatory site in its low affinity state (K = 1 X 10(5) M-1) starts to bind Ca2+ significantly, full activation is reached at [Ca2+] for which the Ca-specific site in its high affinity state (K = 3 X 10(6) M-1) approaches saturation. These results suggest that, in the actomyosin ATPase cycle, there are at least two calcium-activated states of regulated actin (one low and one high), the high affinity state being induced by interactions of myosin with actin in the cycle.  相似文献   

13.
A myosin II is thought to be the driving force of the fast cytoplasmic streaming in the plasmodium of Physarum polycephalum. This regulated myosin, unique among conventional myosins, is inhibited by direct Ca2+ binding. Here we report that Ca2+ binds to the first EF-hand of the essential light chain (ELC) subunit of Physarum myosin. Flow dialysis experiments of wild-type and mutant light chains and the regulatory domain revealed a single binding site that shows moderate specificity for Ca2+. The regulatory light chain, in contrast to regulatory light chains of higher eukaryotes, is unable to bind divalent cations. Although the Ca2+-binding loop of ELC has a canonical sequence, replacement of glutamic acid to alanine in the -z coordinating position only slightly decreased the Ca2+ affinity of the site, suggesting that the Ca2+ coordination is different from classical EF-hands; namely, the specific "closed-to-open" conformational transition does not occur in the ELC in response to Ca2+. Ca2+- and Mg2+-dependent conformational changes in the microenvironment of the binding site were detected by fluorescence experiments. Transient kinetic experiments showed that the displacement of Mg2+ by Ca2+ is faster than the change in direction of cytoplasmic streaming; therefore, we conclude that Ca2+ inhibition could operate in physiological conditions. By comparing the Physarum Ca2+ site with the well studied Ca2+ switch of scallop myosin, we surmise that despite the opposite effect of Ca2+ binding on the motor activity, the two conventional myosins could have a common structural basis for Ca2+ regulation.  相似文献   

14.
The actomyosin protein complex of Physarum polycephalum was prepared from vegetative and starved plasmodia. The yield of actomyosin per unit wet wt. was the same from both types of plasmodia. Myosin was resolved from the complex by gel filtration and purified by ion-exchange chromatography. The Ca(2+)-stimulated adenosine triphosphatase activities of myosin preparations from vegetative and starved plasmodia were not appreciably different. Synthesis of myosin de novo was shown to occur during the starvation phase of the life-cycle by the isolation of labelled myosin preparations from plasmodia starved in the presence of [2-(14)C]glycine. Fractionation of polyacrylamide gels after gel filtration of labelled myosin confirmed the presence of label in the adenosine triphosphatase-active myosin band. It is concluded that during starvation myosin synthesis continues although there is a net loss of approx. 50% of the total protein. Sodium dodecyl sulphate-polyacrylamide-gel electrophoresis of Physarum myosin showed the presence of low-molecular-weight components of the molecule, similar to those of muscle myosins. The content and composition of the free amino acid pool of Physarum was measured at various time-intervals during the vegetative and starvation phases of the life-cycle.  相似文献   

15.
Smooth muscle contraction follows an increase in cytosolic Ca(2+) concentration, activation of myosin light chain kinase, and phosphorylation of the 20-kDa light chain of myosin at Ser(19). Several agonists acting via G protein-coupled receptors elicit a contraction without a change in [Ca(2+)](i) via inhibition of myosin light chain phosphatase and increased myosin phosphorylation. We showed that microcystin (phosphatase inhibitor)-induced contraction of skinned smooth muscle occurred in the absence of Ca(2+) and correlated with phosphorylation of myosin light chain at Ser(19) and Thr(18) by a kinase distinct from myosin light chain kinase. In this study, we identify this kinase as integrin-linked kinase. Chicken gizzard integrin-linked kinase cDNA was cloned, sequenced, expressed in E. coli, and shown to phosphorylate myosin light chain in the absence of Ca(2+) at Ser(19) and Thr(18). Subcellular fractionation revealed two distinct populations of integrin-linked kinase, including a Triton X-100-insoluble component that phosphorylates myosin in a Ca(2+)-independent manner. These results suggest a novel function for integrin-linked kinase in the regulation of smooth muscle contraction via Ca(2+)-independent phosphorylation of myosin, raise the possibility that integrin-linked kinase may also play a role in regulation of nonmuscle motility, and confirm that integrin-linked kinase is indeed a functional protein-serine/threonine kinase.  相似文献   

16.
The purpose of this study was to examine whether the nitric oxide donor S-nitrosoglutathione (GSNO) relaxes canine tracheal smooth muscle (CTSM) strips by decreasing Ca(2+) sensitivity [i.e., the amount of force for a given intracellular Ca(2+) concentration ([Ca(2+)](i))]. We further investigated whether GSNO decreases Ca(2+) sensitivity by altering the relationship between regulatory myosin light chain (rMLC) phosphorylation and [Ca(2+)](i) and the relationship between force and rMLC phosphorylation. GSNO (100 microM) relaxed intact CTSM strips contracted with 45 mM KCl by decreasing Ca(2+) sensitivity in comparison to control strips without significantly decreasing [Ca(2+)](i). GSNO reduced the amount of rMLC phosphorylation for a given [Ca(2+)](i) but did not affect the relationship between isometric force and rMLC phosphorylation. These results show that in CTSM strips contracted with KCl, GSNO decreases Ca(2+) sensitivity by affecting the level of rMLC phosphorylation for a given [Ca(2+)](i), suggesting that myosin light chain kinase is inhibited or that smooth muscle protein phosphatases are activated by GSNO.  相似文献   

17.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

18.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

19.
Myosin modified in the presence or in the absence of pyrophosphate by 2,4-dinitrophenyl beta-hydroxyethyl disulphide was treated with iodo[1-(14)C]acetamide. The residual Ca(2+)-stimulated adenosine triphosphatase (ATPase) activity of the modified myosin was different depending on the presence or absence of PP(i) during modification and the number of 2,4-dinitrophenyl beta-hydroxyethyl disulphide-modified thiol groups. The radioactivity incorporated into the light components of myosin correlated with the Ca(2+)-stimulated ATPase activity of the modified myosin and decreased with decreasing residual Ca(2+)-stimulated ATPase activity of the modified myosin. When native myosin was treated with low concentrations of iodo[1-(14)C]acetamide the residual Ca(2+)-stimulated ATPase activity of carboxyamidomethylated myosin was high and the radioactivity incorporated into the light components of myosin was negligible. The thiol groups of the light components of myosin are essential to preserve the ATPase activity of the protein and are close to the pyrophosphate-binding sites.  相似文献   

20.
The two light chains of Physarum myosin have been purified in a 1:1 ratio with a yield of 0.5-1 mg/100 g of plasmodium and a purity of 40- 70%; the major contaminant is a 42,000-dalton protein. The 17,700 Mr Physarum myosin light chain (PhLC1) binds to scallop myofibrils, providing the regulatory light chains (ScRLC) have been removed. The 16,500 Mr light (PhLC2) does not bind to scallop myofibrils. The calcium control of scallop myosin ATPase is lost by the removal of one of the two ScRLC's and restored equally well by the binding of either PhLC1 or rabbit skeletal myosin light chains. When both ScRLC's are removed, replacement by two plasmodial light chains does not restore calcium control as platelet or scallop light chains do. Purified plasmodial actomyosin does not bind calcium in 10(-6) M free calcium, 1 mM MgCl2. No tropomyosin was isolated from Physarum by standard methods. Because the Physarum myosin light chains can substitute only partially for light chains from myosin linked systems, because calcium does not bind to the actomyosin, and because tropomyosin is apparently absent, the regulation of plasmodial actomyosin by micromolar Ca++ may involve other mechanisms, possibly phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号