首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The A23187 induced calcium uptake in ATP depleted cells was determined at pH 6.9 in the presence of trifluoperazine (TFP, 0.30 mM), compound 48/80 (0.89 mg/ml), 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8, 2.13 mM) and verapamil (1.81 mM). Apart from verapamil the drugs all increased the maximum rate of ionophore-mediated calcium flux by 50-60 per cent. After the ionophore addition some time elapsed before the calcium flux attained the maximum value, and this time dependence could be interpreted as a slow uptake of A23187 into the membrane: five seconds after the addition of A23187 half of the added ionophore was able to transport calcium through the membrane. The effect of pH on the ionophore-mediated calcium uptake was determined in the absence and presence of TFP. At pH 7.4 the maximum rate of calcium flux in the absence of TFP was two to three times higher than that at pH 6.9 and TFP increased the uptake rate by 98 per cent.  相似文献   

2.
Both cAMP and Ca2+ play important roles in the steroidogenic action of LH in hen granulosa cells. However, the interaction of these intracellular messengers is not fully understood. In the present study we used two calcium ionophores (ionomycin and A23187), as well as trifluoperazine (TFP), an inhibitor of calmodulin, to investigate LH- and forskolin-induced cAMP production in granulosa cells isolated from the largest (F1) preovulatory follicle of White Leghorn laying hens. Between 0.1 and 1.0 microM, both ionophores significantly potentiated cAMP responses to LH in the presence of 0.1 mM extracellular Ca2+. When calcium was omitted from the medium, ionophores had no effect. When either calcium was raised above 1 mM, or the concentration of ionophores was increased above 1 microM, LH-induced cAMP production was drastically inhibited. In the presence of 0.5-2.0 mM calcium, A23187 inhibited forskolin-promoted cAMP synthesis. TFP, while having no effect on basal cAMP, suppressed LH-induced responses and the potentiating effect of ionomycin. It is concluded that for full activation of the adenylate cyclase/cAMP system by LH, Ca-calmodulin is required at a site upstream from the catalytic component of the enzyme. However, high intracellular Ca2+ and/or other effects of ionophores (such as uncoupling of oxidative phosphorylation) inhibit LH-induced cAMP production.  相似文献   

3.
Increasing free intracellular Ca (Cai) from less than 0.1 microM to 10 microM by means of A23187 activated Ca-stimulated K transport and inhibited the Na-K pump in resealed human red cell ghosts. These ghosts contained 2 mM ATP, which was maintained by a regenerating system, and arsenazo III to measure Cai. Ca-stimulated K transport was activated 50% at 2-3 microM free Cai and the Na-K pump was inhibited 50% by 5-10 microM free Cai. Free Cai from 1 to 8 microM stimulated K efflux before it inhibited the Na-K pump, dissociating the effect of Ca on the two systems. 3 microM trifluoperazine inhibited Ca-stimulated K efflux and 0.5 mM quinidine reduced Na-K pumping by 50%. In other studies, incubating fresh intact cells in solutions containing Ca and 0.5 microM A23187 caused the cells to lose K heterogeneously. Under the same conditions, increasing A23187 to 10 microM initiated a homogeneous loss of K. In ATP-deficient ghosts containing Cai equilibrated with A23187, K transport was activated at the same free Cai as in the ghosts containing 2 mM ATP. Neither Cao nor the presence of an inward Ca gradient altered the effect of free Cai on the permeability to K. In these ghosts, transmembrane interactions of Na and K influenced the rate of Ca-stimulated K efflux independent of Na- and K-induced changes in free Cai or sensitivity to Cai. At constant free Cai, increasing Ko from 0.1 to 3 mM stimulated K efflux, whereas further increasing Ko inhibited it. Increasing Nai at constant Ki and free Cai markedly decreased the rate of efflux at 2 mM Ko, but had no effect when Ko was greater than or equal to 20 mM. These transmembrane interactions indicate that the mechanism underlying Ca-stimulated K transport is mediated. Since these interactions from either side of the membrane are independent of free Cai, activation of the transport mechanism by Cai must be at a site that is independent of those responsible for the interaction of Na and K. In the presence of A23187, this activating site is half-maximally stimulated by approximately 2 microM free Ca and is not influenced by the concentration of ATP. The partial inhibition of Ca-stimulated K efflux by trifluoperazine in ghosts containing ATP suggests that calmodulin could be involved in the activation of K transport by Cai.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
T Shimizu  M Hatano  Y Muto  Y Nozawa 《FEBS letters》1984,166(2):373-377
We have used 19F NMR to study interactions of trifluoperazine (TFP), a potent calmodulin (CaM) antagonist, with Tetrahymena calmodulin (Tet. CaM). Changes in chemical shift and bandwidth of TFP caused by adding Tet. CaM in the presence of excess Ca2+ were much smaller than those by adding porcine CaM. The spectral features of the TFP-Tet. CaM solution in the presence of excess Ca2+ were quite similar to those of the TFP-porcine CaM solution in the absence of Ca2+. The exchange rate of TFP from Tet. CaM was estimated to be nearly 20 s-1. The TFP-Tet. CaM solution in the absence of Ca2+ showed a pronounced pH dependence of the 19F NMR chemical shift, whereas the solution in the presence of excess Ca2+ showed a smaller pH dependence. Thus, it was suggested that TFP is located near a hydrophilic region of the Tet. CaM molecule in the absence of Ca2+, while TFP is located near a hydrophobic region of the Tet. CaM in the presence of excess Ca2+.  相似文献   

5.
6.
The role of the calcium messenger system in the regulation of ion absorption across the teleost intestine was studied using pharmacological intervention. Radiochloride transport was independent of external Ca2+ over the range 10 microM to 2.5 mM. Treatment with the Ca2+ ionophore A23187 (to hyperpolarization of the apical membrane potential of intestinal epithelial cells. The Ca2+-calmodulin antagonists trifluoperazine (TFP) and calmidazolium (R24571) produced opposite effects, i.e., stimulation of Cl- absorption and cellular depolarization. Treatment with TFP or R24571 will block or override the inhibitory action of A23187. These data suggest a regulatory role for Ca2+ in the control of intestinal NaCl absorption and mediation via calmodulin.  相似文献   

7.
This study was undertaken to examine the mechanism by which metabolic inhibition reduces amino acid active transport in ehrlich ascites tumor cells. At 37 degrees C the metabolic inhibitor combination 0.1 mM 2,4-dinitrophenol (DNP) + 10 mM 2- deoxy-D-glucose (DOG) reduced the cell ATP concentration to 0.10- 0.15 mM in less than 5 min. This inhibition was associated with a 20.6 percent +/- 6.4 percent (SD) decrease in the initial influx of α-aminoisobutyric acid (AIB), and a two- to fourfold increase in the unidirectional efflux. These effects could be dissociated from changes in cell Na(+) or K(+) concentrations. Cells incubated to the steady state in 1.0-1.5 mM AIB showed an increased steady-state flux in the presence of DNP + DOG. Steady- state fluxes were consistent with trans-inhibition of AIB influx and trans-stimulation of efflux in control cells, but trans- stimulation of both fluxes in inhibited cells. In spite of the reduction of the cell ATP concentration to less than 0.15 mM and greatly reduced transmembrane concentration gradients of Na(+) and K(+), cells incubated to the steady state in the presence of the inhibitors still established an AIB distribution ration 13.8 +/- 2.6. The results are interpreted to indicate that a component of the reduction of AIB transport produced by metabolic inhibition is attributable to other actions in addition to the reduction of cation concentration gradients. Reduction of cell ATP alone is not responsible for the effects of metabolic inhibition, and both the transmembrane voltage and direct coupling to substrate oxidation via plasma-membrane-bound enzymes must be considered as possible energy sources for amino acid active transport.  相似文献   

8.
The anti-calmodulin drugs calmidazolium (CMZ) and trifluoperazine (TFP) were shown to have a number of effects on 45Ca transport by plasmalemmal vesicles from gastric smooth muscle. Although these compounds produced the expected dose-dependent inhibition of the plasmalemmal ATP-dependent Ca2+ transport system, they also evoked a Ca2+ release comparable to that observed in the presence of the Ca2+ ionophore, ionomycin. This increased transmembrane Ca2+ flux was so large that it accounted for much of the apparent decrease in 45Ca uptake produced by these agents. Thus, direct effects of CMZ and TFP on ATP-dependent 45Ca uptake could only be reliably assessed for brief (less than or equal to 30 seconds) drug exposures. The explanation for the observed effects of CMZ and TFP on membrane Ca2+ permeability is unclear. The increased transmembrane Ca2+ flux may reflect nonspecific effects on membrane permeability or it may reflect a specific interaction of the anticalmodulin drugs with a Ca2+ release channel or with the Ca2+ transport ATPase. In any case, these results suggest the need for caution in the design and interpretation of studies using both CMZ and TFP as anticalmodulin agents.  相似文献   

9.
L de Meis 《FEBS letters》1987,213(2):333-336
The ATPase activity of soluble F1 ATPase of mitochondria is activated by Pi. The concentration of Pi required for half-maximal activation decreases from a value higher than 50 mM to about 1 mM Pi when one of the organic solvents dimethyl sulfoxide (15 to 30%), methanol (7.5 to 15%) or ethylene glycol (10 to 30%) is added to the assay medium. This effect is observed in the presence of MgCl2 but not in the presence of CaCl2.  相似文献   

10.
In order to examine the effect of a metal binding to the polypeptide chain on the aggregation of a protein in the refolding process, we prepared a mutant hen lysozyme possessing the same Ca(2+) binding site as in human alpha-lactalbumin by Escherichia coli expression system (Ser(-1) CaB lysozyme). In the presence of 2 mM CaCl(2), the refolding yield of Ser(-1) CaB lysozyme at a low protein concentration (25 microg/mL) was similar to that of the wild-type lysozyme (80%), but that at high protein concentration (200 microg/mL) decreased (15%) due to aggregation comparing to that of the wild-type lysozyme (45%). However, the refolding yield of Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) even at a protein concentration of 200 microg/mL was 80% and was higher than that of the wild-type lysozyme. From analysis of chemical shift changes of the cross peaks in the backbone region of total correlated spectroscopy (TOCSY) spectra of a decapeptide possessing the same calcium binding site as in Ser(-1) CaB lysozyme in the presence of various concentrations of Ca(2+), it was suggested that the dissociation constant of Ca(2+)-peptide complex was estimated to be 20-36 mM. Moreover, the solubility of the denatured Ser(-1) CaB lysozyme in the presence of 100 mM CaCl(2) was higher than that in the presence of 2 mM CaCl(2) whereas the solubility of the denatured Ser(-1) lysozyme in the presence of 100 mM CaCl(2) was not higher than that in the presence of 2 mM CaCl(2). Therefore, it was concluded that the reduced lysozyme possessing the Ca(2+) binding site was efficiently folded in the presence of high concentration of Ca(2+) (100 mM) even at high protein concentration due to depression of aggregation by the binding of Ca(2+) to the polypeptide chain in Ser(-1) CaB lysozyme.  相似文献   

11.
We studied the role of the N-terminal region of the transmembrane domain of the human erythrocyte anion exchanger (band 3; residues 361-408) in the insertion, folding, and assembly of the first transmembrane span (TM1) to give rise to a transport-active molecule. We focused on the sequence around the 9-amino acid region deleted in Southeast Asian ovalocytosis (Ala-400 to Ala-408), which gives rise to nonfunctional band 3, and also on the portion of the protein N-terminal to the transmembrane domain (amino acids 361-396). We examined the effects of mutations in these regions on endoplasmic reticulum insertion (using cell-free translation), chloride transport, and cell-surface movement in Xenopus oocytes. We found that the hydrophobic length of TM1 was critical for membrane insertion and that formation of a transport-active structure also depended on the presence of specific amino acid sequences in TM1. Deletions of 2 or 3 amino acids including Pro-403 retained transport activity provided that a polar residue was located 2 or 3 amino acids on the C-terminal side of Asp-399. Finally, deletion of the cytoplasmic surface sequence G(381)LVRD abolished chloride transport, but not surface expression, indicating that this sequence makes an essential structural contribution to the anion transport site of band 3.  相似文献   

12.
Subunit a of the vacuolar membrane H(+)-translocating adenosine triphosphatase of the yeast Saccharomyces cerevisiae contains a catalytic site for ATP hydrolysis. N-terminal sequences of six tryptic peptides of the subunit were determined. Based on the peptide sequence information, a 39-base oligonucleotide probe was synthesized, and the gene encoding the subunit (VMA1) was isolated from a genomic DNA library by hybridization. The nucleotide sequence of the gene predicts a polypeptide of 1,071 amino acids with a calculated molecular mass of 118,635 daltons, which is much larger than the value 67 kDa estimated on sodium dodecyl sulfate-polyacrylamide gels. N- and C-terminal regions of the deduced sequence (residues 1-284 and 739-1,071) are very similar to those of the catalytic subunits of carrot (69 kDa) and Neurospora crassa (67 kDa) vacuolar membrane H(+)-ATPases (62 and 73% identity over 600 residues, respectively). The homologous regions also show about 25% sequence identity over 400 residues with beta-subunits of F0F1-ATPases. In contrast, the internal region containing 454 amino acid residues (residues 285-738) shows no detectable sequence similarities to any known ATPase subunits and instead is similar to a yeast endonuclease encoded by the HO gene. None of the six tryptic peptides is located in this internal region. Northern blotting analysis detected a single mRNA of 3.5 kilobases, indicating that the gene has no introns. Although the reason for the discrepancy in molecular mass is unclear at present, these results suggest that a novel processing mechanism, which might involve a post-translational excision of the internal region followed by peptide ligation, operates on the yeast VMA1 product. The VMA1 gene has proven to be the same gene as the TFP1 gene (Shih, C.-K., Wagner, R., Feinstein, S., Kanik-Ennulat, C., and Neff, N. (1988) Mol. Cell. Biol. 8, 3094-3103) whose dominant mutant allele (TFP1-408) confers a dominant trifluoperazine resistance and Ca2(+)-sensitive growth. This and our findings suggest that the vacuolar membrane H(+)-ATPase participates in maintenance of cytoplasmic Ca2+ homeostasis.  相似文献   

13.
The role of endogenous regucalcin, which is a regulatory protein in calcium signaling, in the regulation of nitric oxide (NO) synthase activity in the cloned rat hepatoma H4-II-E cells was investigated. Hepatoma cells were cultured for 24-72 h in the presence of fetal bovine serum (FBS; 10%). NO synthase activity in the 5,500 g supernatant of cell homogenate was significantly increased by the addition of calcium chloride (10 microM) and calmodulin (2.5 microg/ml) in the enzyme reaction mixture. The presence of trifluoperazine (TFP; 50 microM), an antagonist of calmodulin, inhibited the effect of calcium (10 microM) addition in increasing NO synthase activity, indicating the existence of Ca(2+)/calmodulin-dependent NO synthase in hepatoma cells. NO synthase activity was significantly decreased by the addition of regucalcin (10(-8) or 10(-7) M) in the reaction mixture without or with Ca(2+)/calmodulin addition. The effect of regucalcin (10(-7) M) in decreasing NO synthase activity was also seen in the presence of TFP (50 microM) or EGTA (1 mM). The presence of anti-regucalcin monoclonal antibody (10-50 ng/ml) in the reaction mixture caused a significant elevation of NO synthase activity. NO synthase activity was significantly suppressed in the hepatoma cells (transfectants) overexpressing regucalcin. This decrease was completely abolished in the presence of anti-regucalcin monoclonal antibody (50 ng/ml) in the reaction mixture. Moreover, the effect of Ca(2+)/calmodulin addition in increasing NO synthase activity in the hepatoma cells (wild-type) was completely prevented in transfectants. The present study demonstrates that endogenous regucalcin has a suppressive effect on NO synthase activity in the cloned rat hepatoma H4-II-E cells.  相似文献   

14.
A calcium-sensitive cls4 mutant of Saccharomyces cerevisiae ceased dividing in the presence of 100 mM CaCl2, producing large, round, unbudded cells. Since its DNA replication and nuclear division still continued after interruption of normal budding, the cls4 mutant had a defect in bud formation in Ca2+-rich medium. Its calcium content and calcium uptake activity were the same as those of the wild-type strain, suggesting that the primary defect of the mutation was not in a Ca2+ transport system. Genetic analysis showed that the cls4 mutation did not complement the cdc24-1 mutation, which is known to be a temperature-sensitive mutation affecting bud formation and localized cell surface growth at a restrictive temperature. Moreover, cls4 was tightly linked to cdc24, and a yeast 3.4-kilobase-pair DNA fragment carrying both the CLS4 and CDC24 genes was obtained. These results suggest that the cls4 mutation is allelic to the cdc24 mutation. Thus, Ca2+ ion seems to control bud formation and bud-localized cell surface growth.  相似文献   

15.
The effects of trifluoperazine (TFP) on fast and slow axonal transport (AXT) of labeled proteins were examined in the rabbit vagus nerve. Cuffs soaked in a 10 mM, but not 0.1 mM or 1 mM, concentration of TFP applied locally around the vagus nerve in vivo blocked both fast and slow AXT, as measured by the accumulation of 3H-labeled proteins. In vitro, fast AXT was affected by 0.1 mM TFP. The TFP cuff treatment caused a reduction in the number of axonal microtubules (MT) whereas cuffs soaked in saline had no effect. The levels of ATP, ADP, and AMP were not significantly lowered by the TFP treatment. The results suggest that both fast and slow AXT are sensitive to TFP treatment, and that the axonal MT-system may be the main target of the drug.  相似文献   

16.
A Tn917 mutant ofStaphylococcus carnosus TM300, nrIII, was isolated and characterized. Mutant nrIII did not take up nitrate or accumulate nitrite when grown in B-medium supplemented with up to 10 mM nitrate under anoxic conditions; however, it displayed wild-type levels of benzyl viologen-linked nitrate reductase activity. Cultivated in B-medium with nitrate under oxic conditions, mutant nrIII accumulated fivefold less nitrite than the wild-type. The mutation inS. carnosus nrIII could be complemented with a 2-kb chromosomalEcoRI-HpaI fragment from the wild-type. The gene affected by transposon insertion in mutant nrIII was cloned and sequenced. Analysis of the deduced amino acid sequence revealed that this gene, designatednarT, encodes a highly hydrophobic 42-kDa transmembrane protein of 388 amino acids and shows similarities to transport proteins that play a role in nitrate import or nitrite export. The inability of nrIII to take up nitrate under anoxic conditions and its ability to take up and accumulate nitrite in the presence of benzyl viologen, a nitrate ionophore, under the same conditions suggest that NarT represents a transport protein required for nitrate uptake under anoxic conditions inS. carnosus.  相似文献   

17.
A wild-type haploid yeast strain was transformed with a library of wild-type yeast DNA fragments ligated into a high-copy-number plasmid vector (YEp24). The pooled URA+ transformants were plated on rich medium containing a lethal concentration of trifluoperazine (TFP). Plasmids rescued into Escherichia coli from TFP-resistant yeast colonies contained overlapping DNA fragments from a unique region of yeast chromosome XVI. Deletion and disruption experiments, mini-Tn10 LUK hop analysis, and DNA sequencing defined a novel gene with significant amino acid identity to bovine and yeast vacuoletype proteolipid subunits. This is the second locus identified that can be altered to confer TFP resistance to Saccharomyces cerevisiae and that has significant amino acid identity to a vacuolar ATPase subunit. This suggests that a target for TFP in S. cerevisiae is the electrogenic membranes of the vacuolar network and that alteration of expression or activity of vacuolar proton ATPase subunits is a general mechanism for TFP resistance in this yeast.  相似文献   

18.
Glu309, Glu771, Asn796, Thr799, Asp800, and Glu908 (ligands 1 to 6, respectively) appear to form the high affinity Ca2(+)-binding sites of the Ca2(+)-ATPase. The plasticity of the Ca2(+)-binding sites was tested by separate replacement of each of the ligands with a structurally similar oxygen-containing residue using site-specific mutagenesis. Mutant cDNAs were transfected into COS-1 cells, and ATP-dependent Ca2+ transport or partial reactions were studied in microsomes containing the expressed Ca2(+)-ATPases. In most cases where amino acid substitutions were carried out, the expressed enzymes lacked Ca2+ transport function and Ca2(+)-dependent phosphorylation by ATP. Furthermore, the mutant enzymes were phosphorylated by inorganic phosphate, even in the presence of Ca2+, which inhibits phosphorylation of the wild-type enzyme possessing intact Ca2(+)-binding sites. On mutant, however, containing an isosteric replacement of Glu by Gln at ligand 6, exhibited wild-type levels of Ca2+ transport activity and Ca2+ affinity. Two mutants exhibited properties consistent with a reduction in Ca2+ affinity. In the mutant in which Thr was replaced by Ser at ligand 4, Ca2+ transport activity was 70% of wild-type, while half-maximal activation by Ca2+ occurred at 0.8 microM as compared to 0.3 microM for the wild-type enzyme. In the mutant Glu309----Asp at ligand 1, Ca2+ transport activity was lost, but Ca2(+)-activated phosphorylation by ATP was retained. The concentration of Ca2+ required to activate phosphorylation was increased about 10-fold, however, compared to wild type. These results support our hypothesis that ligands 1 to 6, believed to reside within the transmembrane domain, interact with Ca2+ ions during the transport process. The roles of 12 other oxygen-containing residues and of His278 located in the transmembrane domain were also examined by mutation. Although the oxygen-containing side chains of these residues are potential Ca2+ ligands, their replacement with nonpolar amino acids did not abolish Ca2+ transport function, leading to the conclusion that they are not essential ligands for high affinity Ca2+ binding by the Ca2+ pump.  相似文献   

19.
Trifluoperazine inhibits ADP-stimulated respiration in mung bean (Phaseolus aureus) mitochondria when either NADH, malate, or succinate serve as substrates (IC50 values of 56, 59, and 55 microM, respectively). Succinate:ferricyanide oxidoreductase activity of these mitochondria was inhibited to a similar extent. The oxidation of ascorbate/TMPD was also sensitive to the phenothiazine (IC50 = 65 microM). Oxidation of exogenous NADH was inhibited by trifluoperazine even in the presence of excess EGTA [ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid] (IC50 = 60 microM), indicating an interaction with the electron transport chain rather than with the dehydrogenase itself. In contrast, substrate oxidation in Voodoo lily (Sauromatum guttatum) mitochondria was relatively insensitive to the phenothiazine. The results suggest the bc1 complex to be a major site of inhibition. The membrane potential of energized mung bean mitochondria was depressed by micromolar concentrations of trifluoperazine, suggesting an effect on the proton-pumping capability of these mitochondria. Membrane-bound and soluble ATPases were equally sensitive to trifluoperazine (IC50 of 28 microM for both), implying the site of inhibition to be on the F1. Inhibition of the soluble ATPase was not affected by EGTA, CaCl2, or exogenous calmodulin. Trifluoperazine inhibition of electron transport and phosphorylation in plant mitochondria appears to be due to an interaction with a protein of the organelle that is not calmodulin.  相似文献   

20.
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号