首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Egg whites of three species of tortoise and turtle have been compared by gel chromatography for inhibitory activity against proteases. The egg white of Geomda trijuga trijuga Schariggar contains trypsin/subtilisin inhibitor while the egg white of Caretta caretta Linn. contains both trypsin and chymotrypsin inhibitors. No protease inhibitory activity has been detected in the egg white of Trionyx gangeticus Cuvier. An acidic trypsin/subtilisin inhibitor has been purified to homogeneity from the egg white of tortoise (G. trijuga trijuga). It is a single polypeptide chain of 100 amino acid residues, having a molecular weight of 11 700. It contains six disulphide bonds and is devoid of methionine and carbohydrate moiety. Its isoelectric point is at pH 5.95 and is stable at 100°C for 4 h at neutral pH. The inhibitor inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio close to unity. Their dissociation contants are 7.2·10?9 M for bovine trypsin adn 5.5·10?7 M for subtilisin. Chemical modification of amino groups with trinitrobenzene sulfonate has reduced its inhibitory activities against both trypsin and subtilisin, but the loss of its trypsin inhibitory activity is faster than of its subtilisin inhibitory activity. It has independent binding sites for inhibition of trypsin and subtilisin.  相似文献   

2.
The specificity of alkaline mesentericopeptidase (a proteinase closely related to subtilisin BPN') for the C-terminal moiety of the peptide substrate (Pi' specificity) has been studied in both hydrolysis and aminolysis reactions. N-Anthraniloylated peptide p-nitroanilides as fluorogenic substrates and amino acid or peptide derivatives as nucleophiles were used in the enzymic peptide hydrolysis and synthesis. Both hydrolysis and aminolysis kinetic data suggest a stringent specificity of mesentericopeptidase and related subtilisins to glycine as P1' residue and predilection for bulky hydrophobic P2' residues. A synergism in the action of S1' and S2'subsites has been observed. It appears that glycine flanked on both sides by hydrophobic bulky amino acid residues is the minimal amino acid sequence for an effective subtilisin catalysis.  相似文献   

3.
Controlling enzyme-catalyzed regioselectivity in sugar ester synthesis   总被引:3,自引:0,他引:3  
The rational control over enzyme-catalyzed regioselectivity has been studied using sucrose acylation by vinyl esters in organic media as a model. Subtilisins BPN' and Carlsberg preferentially acylate at the 1'-hydroxyl of sucrose with some acylation observed at the 6-hydroxyl. The preference for the 1'-hydroxyl is strongly affected by the hydrophobicity of the organic solvent and the chain length of the vinyl ester. Increasingly hydrophobic solvents and longer chain lengths lower the favorable formation of the 1'-acylation and improve 6-acylation. Molecular modeling of sucrose in the binding pocket of subtilisin BPN' shows that the 1'-acylation is favored in solvents that can solvate sugars (such as pyridine) as the glucose moiety is exposed to the medium, whereas 6-acylation leaves the entire sucrose molecule buried within the enzyme's binding pocket. Thus, 1'-acylation is sterically more favorable than 6-acylation. Increasingly hydrophobic solvents affect regioselectivity by changing the degree of solvation of the glucose moiety in the medium and forcing the sucrose 1'-ester completely into the binding pocket. In a related modeling, the vinyl ester chain length was shown to modulate regioselectivity by controlling the bond angles between the resulting acylenzymes and the sucrose thereby affecting the positioning of the sucrose in the binding pocket of subtilisin BPN'. This study shows that control over enzymic regioselectivity can be achieved by rational choices of substrate and solvent. (c) 1995 John Wiley & Sons, Inc.  相似文献   

4.
Summary The -chymotrypsin-catalyzed transesterification between a racemic JV-trifluoroacetyl-phenylalanine ester and 1-propanol, was carried out in organic media. Although activation of the substrate by introducing electron-withdrawing group to the ester moiety enhanced the rate of reaction, it decreased enantioselectivity at the same time. In the instance of subtilisin Carlsberg, inversion of the L-specificity was observed.  相似文献   

5.
A new substrate for subtilisins, anthraniloyl-Ala-Ala-Phe-4-nitroanilide, has been synthesized and characterized. The peptide is a fluorogenic substrate that is intramolecularly quenched without loss of its chromogenic properties and offers a possibility for double-assay kinetic analysis. The kinetic parameters determined for subtilisin Carlsberg are Km = 0.004 mM, kcat = 104 s-1, and those for subtilisin BPN' are Km = 0.020 mM, kcat = 49 s-1. The substrate is extremely sensitive for subtilisins; the specificity constants are 10-fold higher than the corresponding values for the widely used substrate, succinyl-Ala-Ala-Pro-Phe-4-nitroanilide, and 200- to 1000-fold higher than the values obtained with succinyl-Ala-Ala-Phe-4-nitroanilide. The favorable effect of the anthraniloyl group as a P4 residue in the substrate sequence Ala-Ala-Phe-4-nitroanilide was assumed to be due to an ability to stiffen S4-P4 interactions. The mechanism proposed is hydrogen bond formation between the phenol group of tyrosine-104 and the amino group of the anthraniloyl moiety. In the spectrophotometric assay with the new substrate, the lower detection limit for subtilisin Carlsberg was 1 nM.  相似文献   

6.
The 4-kDa C-terminal domain of both tubulin subunits plays a major role in the regulation of microtubule assembly [Serrano et al. (1984) Biochemistry 23, 4675]. Controlled proteolysis of tubulin with subtilisin produces the selective cleavage of this 4-kDa moiety from alpha- and beta-tubulin with a concomitant enhancement of the assembly. Here we show that gradual removal of the last six to eight amino acid residues of the C-terminal region of alpha and beta subunits by an exopeptidase, carboxypeptidase Y, produces a modified protein (C-tubulin) without relieving the modulatory effect of the C-terminal domain and the usual need of MAPs for microtubule assembly. Actually, treatment with this proteolytic enzyme did not change tubulin assembly as promoted by either MAP-2, taxol, MgCl2, dimethyl sulfoxide, or glycerol. The critical concentration for the assembly of C-tubulin remained the same as that for the unmodified tubulin control. Microtubule-associated proteins MAP-2 and tau incorporated into C-tubulin polymers. Clearly, pure C-tubulin did not assemble in the absence of MAPs or without addition of assembly-promoting compounds. However, proteolysis with the exopeptidase induced changes in tubulin conformation as assessed by biophysical methods and double-limited proteolysis. The cleavage with subtilisin after carboxypeptidase digestion did not result in enhancement of the assembly to the levels observed after the treatment of native tubulin with subtilisin. Interestingly, Ca2+ ions affected neither C-tubulin assembly nor depolymerized microtubules assembled from C-tubulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Localization of the tubulin binding site for tau protein   总被引:9,自引:0,他引:9  
Limited proteolysis of tubulin with subtilisin resulted in the removal of the carboxyl-terminal moiety of tubulin subunits. The remaining peptides from both alpha and beta tubulin lacking the carboxyl terminal did not bind to tau factor nor to MAP2 or MAP1. The carboxyl-terminal fragments bind to tau factor and MAP2 and both compete for the same binding sites in the tubulin molecule. Our results suggest that the carboxyl-terminal region of tubulin is a regulatory domain for the assembly of tubulin and the site for interaction with MAPs.  相似文献   

8.
Phenylalanine ammonia-lyase (EC 4.3.1.5) of the yeast Rhodotorula glutinis was rapidly inactivated by duodenal juice. It was susceptible to chymotrypsin and subtilisin and to a lesser extent trypsin. Initial proteolysis of the enzyme by chymotrypsin and trypsin resulted in cleavage of the monomeric subunit (75 000 Mr) into a large (65 000 Mr) and a small (10 000 Mr) peptide. The small peptide was rapidly degraded. The 65 000-Mr fragment was resistant to prolonged incubation with chymotrypsin, but was degraded by trypsin under the same conditions. Phenylalanine ammonia-lyase was cleaved into several polypeptides by subtilisin, the 65 000-Mr peptide being totally absent. The N-terminal region of the enzyme was contained in the 65 000-Mr fragment, as was the dehydroalanine moiety, the prosthetic group. Active-site-binding ligands protect the enzyme from inactivation by the three proteinases, and peptide-bond cleavage by trypsin and chymotrypsin. Several chemical modifications were performed on phenylalanine ammonia-lyase. Some decreased its antigenicity, and ethyl acetimidate decreased the rate of degradation of the 65 000-Mr peptide by trypsin. The modification did not protect the enzyme from proteolytic inactivation of the enzymic activity. These observations are discussed in terms of the structure of phenylalanine ammonia-lyase and site of action of the proteinases.  相似文献   

9.
B Ruan  J Hoskins  P N Bryan 《Biochemistry》1999,38(26):8562-8571
In vitro folding of mature subtilisin is extremely slow. The isolated pro-domain greatly accelerates in vitro folding of subtilisin in a bimolecular reaction whose product is a tight complex between folded subtilisin and folded pro-domain. In our studies of subtilisin, we are trying to answer two basic questions: why does subtilisin fold slowly without the pro-domain and what does the pro-domain do to accelerate the folding rate? To address these general questions, we are trying to characterize all the rate constants governing individual steps in the bimolecular folding reaction of pro-domain with subtilisin. Here, we report the results of a series of in vitro folding experiments using an engineered pro-domain mutant which is independently stable (proR9) and two calcium-free subtilisin mutants. The bimolecular folding reaction of subtilisin and proR9 occurs in two steps: an initial binding of proR9 to unfolded subtilisin, followed by isomerization of the initial complex into the native complex. The central findings are as follows. First, the independently stable proR9 folds subtilisin much faster than the predominantly unfolded wild-type pro-domain. Second, at micromolar concentrations of proR9, the subtilisin folding reaction becomes limited by the rate at which prolines in the unfolded state can isomerize to their native conformation. The simpliest mechanism which closely describes the data includes two denatured forms of subtilisin, which form the initial complex with proR9 at the same rate but which isomerize to the fully folded complex at much different rates. In this model, 77% of the subtilisin isomerizes to the native form slowly and the remaining 23% isomerizes more rapidly (1.5 s-1). The slow-folding population may be unfolded subtilisin with the trans form of proline 168, which must isomerize to the cis form during refolding. Third, in the absence of proline isomerization, the rate of subtilisin folding is rapid and at [proR9] 3 s-1. The implications of these results concerning why subtilisin folds slowly without the pro-domain are discussed.  相似文献   

10.
Jia Y  Liu H  Bao W  Weng M  Chen W  Cai Y  Zheng Z  Zou G 《FEBS letters》2010,584(23):4789-4796
Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model.  相似文献   

11.
Protein engineering of subtilisin   总被引:10,自引:0,他引:10  
The serine protease subtilisin is an important industrial enzyme as well as a model for understanding the enormous rate enhancements affected by enzymes. For these reasons along with the timely cloning of the gene, ease of expression and purification and availability of atomic resolution structures, subtilisin became a model system for protein engineering studies in the 1980s. Fifteen years later, mutations in well over 50% of the 275 amino acids of subtilisin have been reported in the scientific literature. Most subtilisin engineering has involved catalytic amino acids, substrate binding regions and stabilizing mutations. Stability has been the property of subtilisin which has been most amenable to enhancement, yet perhaps least understood. This review will give a brief overview of the subtilisin engineering field, critically review what has been learned about subtilisin stability from protein engineering experiments and conclude with some speculation about the prospects for future subtilisin engineering.  相似文献   

12.
Subtilisin 72, a serine proteinase secreted by Bac. subtilis strain 72 was purified by covalent chromatography on Sepharose sorbent containing p-(omega-aminomethyl)phenylboronic acid as a ligand. The homogeneity of subtilisin 72 was confirmed by isoelectrofocusing in a thin layer of polyacrylamide gel (pl 8.6). The amino acid composition of this enzyme is different from that of other subtilisins, e. g. subtilisin Carlsberg. The N = terminal amino acid sequence of subtilisin 72 traced up to the 35th residue turned to be the same as that of subtilisin Carlsberg with the exception of the 21st (Tyr) and the 30th (Ile) residues. This very pronounced extent of homology shows that subtilisin 72 is very similar although not identical to subtilisin Carlsberg.  相似文献   

13.
The 77 residue propeptide at the N-terminal end of subtilisin E plays an essential role in subtilisin folding as a tailor-made intramolecular chaperone. Upon completion of folding, the propeptide is autoprocessed and removed by subtilisin digestion. This propeptide-mediated protein folding has been used as a paradigm for the study of protein folding. Here, we show by three independent methods, that the propeptide domain and the subtilisin domain show distinctive intrinsic stability that is obligatory for efficient autoprocessing of the propeptide domain. Two tryptophan residues, Trp106 and Trp113, on the surface of subtilisin located on one of the two helices that form the interface between the propeptide and the subtilisin domains play a key role in maintaining the distinctive instability of the propeptide domain, after completion of folding. When either of the Trp residues was substituted with Tyr, the characteristic biphasic heat denaturation profile of two domains unfolding was not observed, resulting in a single transition of denaturation. The results provide evidence that the propeptide not only plays an essential role in subtilisin folding, but upon completion of folding it behaves as an independent domain. Once the propeptide-mediated folding is completed, the propeptide domain is readily eliminated without interference from the subtilisin domain. This "autotomic" behavior of the propeptide may be a prevailing principle in propeptide-mediated protein folding.  相似文献   

14.
Radisky ES  Kwan G  Karen Lu CJ  Koshland DE 《Biochemistry》2004,43(43):13648-13656
A series of mutants of chymotrypsin inhibitor 2 (CI2), at residues that interact with the inhibited enzyme subtilisin BPN', were studied to determine the relative importance of intermolecular contacts on either side of the scissile bond. Mutants were tested for inhibition of subtilisin, rates of hydrolysis by subtilisin, and ability to acylate subtilisin. Additionally, crystal structures of the mutant CI2 complexes with subtilisin were obtained. Ordered water molecules were found to play an important role in inhibitor recognition, and features of the crystal structures, in combination with biochemical data, support a transition-state stabilization role for the P(1) residue in subtilisin catalysis. Consistent with the proposed mechanism of inhibition, in which rapid acylation is followed by religation, leaving-group contacts with the enzyme were found to be more critical determinants of inhibition than acylating-group contacts in the mutants studied here.  相似文献   

15.
Engineering thermostability in subtilisin BPN' by in vitro mutagenesis   总被引:1,自引:0,他引:1  
A procedure has been developed for the isolation and identification of mutants of the bacterial serine protease, subtilisin, which exhibit enhanced thermostability. The cloned subtilisin BPN' gene from Bacillus amyloliquefaciens was treated with a variety of chemical mutagens to introduce random mutations in the coding sequence. Strains containing the cloned, mutagenized subtilisin gene which produced subtilisin with enhanced thermostability were selected by a simple plate assay procedure, which screens for esterase activity on nitrocellulose filters after preincubation at elevated temperatures. The identification and characterization of eight different stabilizing mutations are described. Several mutants containing various combinations of these stabilizing mutations were constructed by oligonucleotide-directed mutagenesis. Combining independent, stabilizing mutations in the same subtilisin molecule has resulted in an approximate multiplicative decrease in the rate of thermal inactivation. In this way, a variant of subtilisin has been constructed which is about 12-fold more stable than wild-type subtilisin, with no radical changes in the tertiary protein structure but rather minor, independent alterations in amino acid sequence. The ultimate goal in these studies is to be able to accurately predict where stabilizing changes can be made in a protein.  相似文献   

16.
Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.   总被引:3,自引:0,他引:3  
S Braxton  J A Wells 《Biochemistry》1992,31(34):7796-7801
A rational approach was taken to improve the stability of subtilisin BPN' to autoproteolysis. Two sites of autoproteolysis were identified by isolation of early autolysis products and amino-terminal sequence analysis. These studies showed that subtilisin rapidly cleaves Ala48-Ser49 and Ser163-Thr164 peptide bonds at elevated temperatures. These two sites appear in regions of high mobility as estimated from crystallographic B-factors and are in extended surface loops. To improve the resistance to thermal-induced autolysis, we replaced sequences around these two sites with sequences derived from a thermophilic homologue of subtilisin, thermitase. Thermitase contains a Ca(2+)-binding site in the region surrounding Ser49. When the Ca(2+)-binding segment of thermitase corresponding to residues 45-63 of subtilisin BPN' was installed into subtilisin BPN', the chimeric protein gained the ability to bind another Ca2+ with moderate affinity (Kd approximately 100 microM). This enzyme had the same kcat as wild-type, had a KM value 8-fold larger than wild-type, and was slightly less stable to thermal inactivation in EDTA. However, in 10 mM CaCl2, the mutant subtilisin BPN' was 10-fold more stable to irreversible inactivation at 60 degrees C than wild-type subtilisin BPN' as measured by residual activity against the substrate sAAPF-pna. Next, mutations and deletions derived from thermitase were introduced near the second autolysis loop in subtilisin BPN' (residues 158-165). However, all of these mutants were less stable than wild-type subtilisin. Thus, some (but not all) mutations derived from a thermophilic homologue near sites of autolysis can be stabilizing to a mesophilic protease.  相似文献   

17.
Bacillus sp. strain DJ-4, which produces extracellular proteases, was screened from Doen-Jang, a traditional Korean fermented food. A fibrinolytic enzyme (subtilisin DJ-4) was purified using commercial chromatographic techniques. The relative molecular mass of the isolated protein was 29 kDa by SDS-PAGE and fibrin zymography assay. The enzyme was characterized as a serine protease by an inhibitor assay on the fibrin zymography gel and by an amidolytic assay using a chromogenic substrate. The enzyme was inhibited by PMSF, but not by EDTA or leupeptin. The first 14 amino acids of the N-terminal sequence were identical to that of subtilisin BPN', but the activity of subtilisin DJ-4 was 2.2 and 4.3 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively.  相似文献   

18.
Conformational diversity within unique amino acid sequences is observed in diseases like scrapie and Alzheimer's disease. The molecular basis of such diversity is unknown. Similar phenomena occur in subtilisin, a serine protease homologous with eukaryotic pro-hormone convertases. The subtilisin propeptide functions as an intramolecular chaperone (IMC) that imparts steric information during folding but is not required for enzymatic activity. Point mutations within IMCs alter folding, resulting in structural conformers that specifically interact with their cognate IMCs in a process termed "protein memory." Here, we show a mechanism that mediates conformational diversity in subtilisin. During maturation, while the IMC is autocleaved and subsequently degraded by the active site of subtilisin, enzymatic properties of this site differ significantly before and after cleavage. Although subtilisin folded by Ile-48 --> Thr IMC (IMCI-48T) acquires an "altered" enzymatically active conformation (SubI-48T) significantly different from wild-type subtilisin (SubWT), both precursors undergo autocleavage at similar rates. IMC cleavage initiates conformational changes during which the IMC continues its chaperoning function subsequent to its cleavage from subtilisin. Structural imprinting resulting in conformational diversity originates during this reorganization stage and is a late folding event catalyzed by autocleavage of the IMC.  相似文献   

19.
The structural gene for a subtilisin J from Bacillus stearothermophilus NCIMB10278 was cloned in Bacillus subtilis using pZ124 as a vector, and its nucleotide sequence was determined. The nucleotide sequence revealed only one large open reading frame, composed of 1,143 base pairs and 381 amino acid residues. A Shine-Dalgarno sequence was found 8 bp upstream from the translation start site (GTG). The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprised of 275 residues. The productivity of subtilisin in the culture broth of the Bacillus subtilis was about 46-fold higher than that of the Bacillus stearothermophilus. The amino acid sequence of the extracellular alkaline protease subtilisin J is highly homologous to that of subtilisin E and it shows 69% identity with subtilisin Carlsberg, 89% with subtilisin BPN' and 70% with subtilisin DY. Some properties of the subtilisin J that had been purified from the Bacillus subtilis were examined. The subtilisin J has alkaline pH characteristics and a molecular weight of 27,500. It retains about 50% of its activity even after treatment at 60 degrees C for 30 min in the presence of 2 mM calcium chloride.  相似文献   

20.
A procedure has been developed for the isolation and identification of mutants in the bacterial serine protease subtilisin that exhibit enhanced thermal stability. The cloned subtilisin BPN' gene from Bacillus amyloliquefaciens was treated with bisulfite, a chemical mutagen that deaminates cytosine to uracil in single-stranded DNA. Strains containing the cloned, mutagenized subtilisin gene which produced subtilisin with enhanced thermal stability were selected by a simple plate assay procedure which screens for esterase activity on nitrocellulose filters after preincubation at elevated temperatures. One thermostable subtilisin variant, designated 7150, has been fully characterized and found to differ from wild-type subtilisin by a single substitution of Ser for Asn at position 218. The 7150 enzyme was found to undergo thermal inactivation at one-fourth the rate of the wild-type enzyme when incubated at elevated temperatures. Moreover, the mid-point in the thermally induced transition from the folded to unfolded state was found to be 2.4-3.9 degrees C higher for 7150 as determined by differential scanning calorimetry under a variety of conditions. The refined, 1.8-A crystal structures of the wild-type and 7150 subtilisin have been compared in detail, leading to the conclusion that slight improvements in hydrogen bond parameters in the vicinity of position 218 result in the enhanced thermal stability of 7150.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号