首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Enzymes of serine metabolism in normal and neoplastic rat tissues   总被引:3,自引:0,他引:3  
Enzymes involved in the pathway of de novo serine biosynthesis (L-phosphoserine aminotransferase) and in alternative pathways of serine utilization (L-serine hydroxymethyltransferase, L-serine dehydratase and L-serine aminotransferase) were assayed in normal adult and fetal rat tissues and in a range of transplantable rat tumors. Serine dehydratase and serine aminotransferase activities were essentially confined to normal adult liver and kidney, whereas phosphoserine aminotransferase and serine hydroxymethyltransferase activities showed a more ubiquitous tissue distribution. In particular, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were appreciable in neoplastic tissues, in the absence of the other enzymes of serine utilization. The pattern of enzyme distribution suggests that the synthesis of serine de novo is metabolically coupled to its utilization for nucleotide biosynthesis in tumors of differing tissue origins.  相似文献   

2.
Enzymes involved in the pathway of de novo serine biosynthesis (L-phosphoserine aminotransferase) and in alternative pathways of serine utilization (L-serine hydroxymethyltransferase, L-serine dehydratase and L-serine aminotransferase) were assayed in normal adult and fetal rat tissues and in a range of transplantable sat tumors. Serine dehydratase and serine aminotransferase activities were essentially confined to normal adult liver and kidney, whereas phosphoserine aminotransferase and serine hydroxymethyltransferase activities showed a more ubiquitous tissue distribution. In particular, phosphoserine aminotransferase and serine hydroxymethyltransferase activities were appreciable in neoplastic tissues, in the absence of the other enzymes of serine utilization. The pattern of enzyme distribution suggests that the synthesis of serine de novo is metabolically coupled to its utilization for nucleotide biosynthesis in tumors of differing tissue origins.  相似文献   

3.
L-Serine metabolism in rat liver was investigated, focusing on the relative contributions of the three pathways, one initiated by L-serine dehydratase (SDH), another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Because serine hydroxymethyltransferase is responsible for the interconversion between serine and glycine, SDH, SPT/AGT, and GCS were considered to be the metabolic exits of the serine-glycine pool. In vitro, flux through SDH was predominant in both 24-h starved and glucagon-treated rats. Flux through SPT/AGT was enhanced by glucagon administration, but even after the induction, its contribution under quasi-physiological conditions (1 mM L-serine and 0.25 mM pyruvate) was about (1)/(10) of that through SDH. Flux through GCS accounted for only several percent of the amount of L-serine metabolized. Relative contributions of SDH and SPT/AGT to gluconeogenesis from L-serine were evaluated in vivo based on the principle that 3H at the 3 position of L-serine is mostly removed in the SDH pathway, whereas it is largely retained in the SPT/AGT pathway. The results showed that SPT/AGT contributed only 10-20% even after the enhancement of its activity by glucagon. These results suggested that SDH is the major metabolic exit of L-serine in rat liver.  相似文献   

4.
The tumour growth inhibitor L-2-amino-4-methoxy-trans-3-butenoic acid (Ro07-7957) inhibits serine hydroxymethyltransferase in cytosolic extracts of Walker carcinoma non-competitively with respect to L-serine with an apparent inhibition constant similar to the Km-value for L-serine. The kinetics of inactivation suggest that it reacts as an irreversible substrate analogue. Incubation of Walker cells with Ro07-7957 causes an increase in serine hydroxymethyltransferase activity which is most pronounced at concentration ≤LD50. This increase in enzyme activity does not occur in the presence of cycloheximide. These results suggest that inhibition of serine hydroxymethyltransferase in intact cells is accompanied by an increase in enzyme biosynthesis and that the growth inhibitory property of Ro07-7957 does not involve interference with the conversion of serine to glycine.  相似文献   

5.
L-Serine metabolism in rabbit, dog, and human livers was investigated, focusing on the relative contributions of the three pathways, one initiated by serine dehydratase, another by serine:pyruvate/alanine:glyoxylate aminotransferase (SPT/AGT), and the other involving serine hydroxymethyltransferase and the mitochondrial glycine cleavage enzyme system (GCS). Under quasi-physiological in vitro conditions (1 mM L-serine and 0.25 mM pyruvate), flux through serine dehydratase accounted for only traces, and that through SPT/AGT substantially contributed no matter whether the enzyme was located in peroxisomes (rabbit and human) or largely in mitochondria (dog). As for flux through serine hydroxymethyltransferase and GCS, the conversion of serine to glycine occurred fairly rapidly, followed by GCS-mediated slow decarboxylation of the accumulated glycine. The flux through GCS was relatively high in the dog and low in the rabbit, and only in the dog was it comparable with that through SPT/AGT. An in vivo experiment with L-[3-3H,14C]serine as the substrate indicated that in rabbit liver, gluconeogenesis from L-serine proceeds mainly via hydroxypyruvate. Because an important role in the conversion of glyoxylate to glycine has been assigned to peroxisomal SPT/AGT from the studies on primary hyperoxaluria type 1, these results suggest that SPT/AGT in this organelle plays dual roles in the metabolism of glyoxylate and serine.  相似文献   

6.
Serine hydroxymethyltransferase (SHMT) plays a key role in cell physiology as it participates in the different interconversion pathway of folate coenzymes, provides almost exclusively folate one carbon fragments for the biosynthesis of a variety of end products. For the first time, Mycobacterium leprae glyA gene, encodes the enzyme serine hydroxymethyltransferase, has been cloned in Escherichia coli, over-expressed and purified the protein product (mlSHMT) for folding and stability studies under various denaturating conditions. The recombinant mlSHMT exists as homo-dimer of molecular mass about 90 kDa under physiological conditions . The studies on catalytic properties of mlSHMT show that the enzyme catalyzes the H(4)-folate dependent retro-aldol cleavage of L-serine, however, D-alanine dependent transaminase activity was absent in the enzyme. Further analysis of the enzyme kinetics for hydroxymethyltransferase reaction for mlSHMT demonstrates a comparable K(m) value for L-serine to SHMTs from other sources but significantly lower catalytic efficiency (k(cat)/K(m)). The mlSHMT is resistant to alkaline denaturation and exist as apo-dimer up to pH 10.5. Urea and guanidinium chloride induces dissociation of mlSHMT dimer into monomer at low denaturant concentrations, and leads to loss of enzymatic activity.  相似文献   

7.
The three-dimensional structures of human and rabbit liver cytosolic recombinant serine hydroxymethyltransferases (hcSHMT and rcSHMT) revealed that E75 and Y83 (numbering according to hcSHMT) are probable candidates for proton abstraction and Calpha-Cbeta bond cleavage in the reaction catalyzed by serine hydroxymethyltransferase. Both these residues are completely conserved in all serine hydroxymethyltransferases sequenced to date. In an attempt to decipher the role of these residues in sheep liver cytosolic recombinant serine hydroxymethyltransferase (scSHMT), E74 (corresponding residue is E75 in hcSHMT) was mutated to Q and K, and Y82 (corresponding residue is Y83 in hcSHMT) was mutated to F. The specific activities using serine as the substrate for the E74Q and E74K mutant enzymes were drastically reduced. These mutant enzymes catalyzed the transamination of D-alanine and 5,6,7, 8-tetrahydrofolate independent retroaldol cleavage of Lallo threonine at rates comparable with wild-type enzyme, suggesting that E74 was not involved directly in the proton abstraction step of catalysis, as predicted earlier from crystal structures of hcSHMT and rcSHMT. There was no change in the apparent Tm value of E74Q upon the addition of L-serine, whereas the apparent Tm value of scSHMT was enhanced by 10 degrees C. Differential scanning calorimetric data and proteolytic digestion patterns in the presence of L-serine showed that E74Q was different to scSHMT. These results indicated that E74 might be required for the conformational change involved in reaction specificity. It was predicted from the crystal structures of hcSHMT and rcSHMT that Y82 was involved in hemiacetal formation following Calpha-Cbeta bond cleavage of L-serine and mutation of this residue to F could lead to a rapid release of HCHO. However, the Y82F mutant had only 5% of the activity and failed to form a quinonoid intermediate, suggesting that this residue is not involved in the formation of the hemiacetal intermediate, but might be involved indirectly in the abstraction of the proton and in stabilizing the quinonoid intermediate.  相似文献   

8.
Cibacron Blue 3G-A inhibited monkey liver serine hydroxymethyltransferase competitively with respect to tetrahydrofolate and non-competitively with respect to L-serine. NADH, a positive heterotropic effector, failed to protect the enzymes against inhibition by the dye and was unable to desorb the enzyme from Blue Sepharose CL-6B gel matrix. The binding of the dye to the free enzyme was confirmed by changes in the dye absorption spectrum. The results indicate that the dye probably binds at the tetrahydrofolate-binding domain of the enzyme, rather than at the 'dinucleotide fold'.  相似文献   

9.
Although L-serine proceeds in just three steps from the glycolytic intermediate 3-phosphoglycerate, and as much as 8% of the carbon assimilated from glucose is directed via L-serine formation, previous attempts to obtain a strain producing L-serine from glucose have not been successful. We functionally identified the genes serC and serB from Corynebacterium glutamicum, coding for phosphoserine aminotransferase and phosphoserine phosphatase, respectively. The overexpression of these genes, together with the third biosynthetic serA gene, serA(delta197), encoding an L-serine-insensitive 3-phosphoglycerate dehydrogenase, yielded only traces of L-serine, as did the overexpression of these genes in a strain with the L-serine dehydratase gene sdaA deleted. However, reduced expression of the serine hydroxymethyltransferase gene glyA, in combination with the overexpression of serA(delta197), serC, and serB, resulted in a transient accumulation of up to 16 mM L-serine in the culture medium. When sdaA was also deleted, the resulting strain, C. glutamicum delta sdaA::pK18mobglyA'(pEC-T18mob2serA(delta197)CB), accumulated up to 86 mM L-serine with a maximal specific productivity of 1.2 mmol h(-1) g (dry weight)(-1). This illustrates a high rate of L-serine formation and also utilization in the C. glutamicum wild type. Therefore, metabolic engineering of L-serine production from glucose can be achieved only by addressing the apparent key position of this amino acid in the central metabolism.  相似文献   

10.
The homogeneous serine hydroxymethyltransferase purified from monkey liver, by the use of Blue Sepharose affinity chromatography, exhibited positive homotropic co-operative interactions (h = 2.5) with tetrahydrofolate and heterotropic interactions with L-serine and nicotinamide nucleotides. The enzyme had an unusually high temperature optimum of 60 degrees C and was protected against thermal inactivation by L-serine. The allosteric effects were abolished when the monkey liver enzyme was purified by using a heat-denaturation step in the presence of L-serine, a procedure adopted by earlier workers for the purification of this enzyme from mammalian and bacterial sources. The enzyme activity was inhibited completely by N5-methyltetrahydrofolate, N5-formyltetrahydrofolate, dichloromethotrexate, aminopterin and D-cycloserine, whereas methotrexate and dihydrofolate were partial inhibitors. The insoluble monkey liver enzyme-antibody complex was catalytically active and failed to show positive homotropic co-operative interactions with tetrahydrofolate (h = 1) and heterotropic interactions with NAD+. The enzyme showed a higher heat-stability in a complex with its antibody than as the free enzyme. These results highlight the pitfalls in using a heat-denaturation step in the purification of allosteric enzymes.  相似文献   

11.
Both serine hydroxymethyltransferase and aspartate aminotransferase belong to the alpha-class of pyridoxal-5'-phosphate (pyridoxalP)-dependent enzymes but exhibit different reaction and substrate specificities. A comparison of the X-ray structure of these two enzymes reveals that their active sites are nearly superimposable. In an attempt to change the reaction specificity of serine hydroxymethyltransferase to a transaminase, His 230 was mutated to Tyr which is the equivalent residue in aspartate aminotransferase. Surprisingly, the H230Y mutant was found to catalyze oxidation of NADH in an enzyme concentration dependent manner instead of utilizing L-aspartate as a substrate. The NADH oxidation could be linked to oxygen consumption or reduction of nitrobluetetrazolium. The reaction was inhibited by radical scavengers like superoxide dismutase and D-mannitol. The Km and kcat values for the reaction of the enzyme with NADH were 74 microM and 5. 2 x 10-3 s-1, respectively. This oxidation was not observed with either the wild type serine hydroxymethyltransferase or H230A, H230F or H230N mutants. Thus, mutation of H230 of sheep liver serine hydroxymethyltransferase to Tyr leads to induction of an NADH oxidation activity implying that tyrosyl radicals may be mediating the reaction.  相似文献   

12.
Serine hydroxymethyltransferase has a conserved histidine residue (His-228) next to the lysine residue (Lys-229) which forms the internal aldimine with pyridoxal 5'-phosphate. This histidine residue is also conserved at the equivalent position in all amino acid decarboxylases and tryptophan synthase. Two mutant forms of Escherichia coli serine hydroxymethyltransferase, H228N and H228D, were constructed, expressed, and purified. The properties of the wild type and mutant enzymes were studied with substrates and substrate analogs by differential scanning calorimetry, circular dichroism, steady state kinetics, and rapid reaction kinetics. The conclusions of these studies were that His-228 plays an important role in the binding and reactivity of the hydroxymethyl group of serine in the one-carbon-binding site. The mutant enzymes utilize substrates and substrate analogs more effectively for a variety of alternate non-physiological reactions compared to the wild type enzyme. As one example, the mutant enzymes cleave L-serine to glycine and formaldehyde when tetrahydropyteroylglutamate is replaced by 5-formyltetrahydropteroylglutamate. The released formaldehyde inactivates these mutant enzymes. The loss of integrity of the one-carbon-binding site with L-serine in the two mutant forms of the enzyme may be the result of these enzymes not undergoing a conformational change to a closed form of the active site when serine forms the external aldimine complex.  相似文献   

13.
Serine hydroxymethyltransferase (EC 2.1.2.1), a member of the alpha-class of pyridoxal phosphate enzymes, catalyzes the reversible interconversion of serine and glycine, changing the chemical bonding at the C(alpha)-C(beta) bond of the serine side-chain mediated by the pyridoxal phosphate cofactor. Scission of the C(alpha)-C(beta) bond of serine substrate produces a glycine product and most likely formaldehyde, which reacts without dissociation with tetrahydropteroylglutamate cofactor. Crystal structures of the human and rabbit cytosolic serine hydroxymethyltransferases (SHMT) confirmed their close similarity in tertiary and dimeric subunit structure to each other and to aspartate aminotransferase, the archetypal alpha-class pyridoxal 5'-phosphate enzyme. We describe here the structure at 2.4 A resolution of Escherichia coli serine hydroxymethyltransferase in ternary complex with glycine and 5-formyl tetrahydropteroylglutamate, refined to an R-factor value of 17.4 % and R(free) value of 19.6 %. This structure reveals the interactions of both cofactors and glycine substrate with the enzyme. Comparison with the E. coli aspartate aminotransferase structure shows the distinctions in sequence and structure which define the folate cofactor binding site in serine hydroxymethyltransferase and the differences in orientation of the amino terminal arm, the evolution of which was necessary for elaboration of the folate binding site. Comparison with the unliganded rabbit cytosolic serine hydroxymethyltransferase structure identifies changes in the conformation of the enzyme, similar to those observed in aspartate aminotransferase, that probably accompany the binding of substrate. The tetrameric quaternary structure of liganded E. coli serine hydroxymethyltransferase also differs in symmetry and relative disposition of the functional tight dimers from that of the unliganded eukaryotic enzymes. SHMT tetramers have surface charge distributions which suggest distinctions in folate binding between eukaryotic and E. coli enzymes. The structure of the E. coli ternary complex provides the basis for a thorough investigation of its mechanism through characterization and structure determination of site mutants.  相似文献   

14.
When provided with glycollate, peroxisomal extracts of leaves of spinach beet (Beta vulgaris L. cv.) converted L-serine and L-glutamate to hydroxypyruvate and 2-oxoglutarate respectively. When approximately saturating concentrations of each of these amino acids were incubated separately with glycollate, the utilization of serine was greater than that of glutamate. The utilization of glutamate was substantially reduced by the presence of relatively low concentrations of serine in the reaction mixture, whereas even high concentrations of glutamate caused only small reductions in serine utilization. Over the entire range of concentrations of amino acids examined, serine was invariably the preferred amino-group donor, but this preference was abolished at higher concentrations of glyoxylate. Serine not only competed favourably for glyoxylate but also inhibited L-glutamate: glyoxylate aminotransferase (GGAT), the degree of inhibition depending upon the glyoxylate concentration. Studies of L-serine: glyoxylate aminotransferase (SGAT) and GGAT in partially purified extracts from spinach-beet leaves confirmed that serine competitively inhibited GGAT but glutamate did not affect SGAT. Both enzymes were inhibited by high glyoxylate concentrations, the inhibition being relieved by suitably high concentrations of the appropriate amino acid. It is concluded that at the low glyoxylate concentrations likely to occur in vivo, the preferential utilization of serine would ensure flux through the glycollate pathway to glycerate, but at higher concentrations of glyoxylate, both enzymes could be fully active in glyoxylate amination.Abbreviations SGAT L-serine: glyoxylate aminotransferase - GGAT L-glutamate: glyoxylate aminotransferase  相似文献   

15.
The combined activities of rabbit liver cytosolic serine hydroxymethyltransferase and C1-tetrahydrofolate synthase convert tetrahydrofolate and formate to 5-formyltetrahydrofolate. In this reaction C1-tetrahydrofolate synthase converts tetrahydrofolate and formate to 5,10-methenyltetrahydrofolate, which is hydrolyzed to 5-formyltetrahydrofolate by a serine hydroxymethyltransferase-glycine complex. Serine hydroxymethyltransferase, in the presence of glycine, catalyzes the conversion of chemically synthesized 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate with biphasic kinetics. There is a rapid burst of product that has a half-life of formation of 0.4 s followed by a slower phase with a completion time of about 1 h. The substrate for the burst phase of the reaction was shown not to be 5,10-methenyltetrahydrofolate but rather a one-carbon derivative of tetrahydrofolate which exists in the presence of 5,10-methenyltetrahydrofolate. This derivative is stable at pH 7 and is not an intermediate in the hydrolysis of 5,10-methenyltetrahydrofolate to 10-formyltetrahydrofolate by C1-tetrahydrofolate synthase. Cytosolic serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate pentaglutamate to 5-formyltetrahydrofolate pentaglutamate 15-fold faster than the hydrolysis of the monoglutamate derivative. The pentaglutamate derivative of 5-formyltetrahydrofolate binds tightly to serine hydroxymethyltransferase and dissociates slowly with a half-life of 16 s. Both rabbit liver mitochondrial and Escherichia coli serine hydroxymethyltransferase catalyze the conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate at rates similar to those observed for the cytosolic enzyme. Evidence that this reaction accounts for the in vivo presence of 5-formyltetrahydrofolate is suggested by the observation that mutant strains of E. coli, which lack serine hydroxymethyltransferase activity, do not contain 5-formyltetrahydrofolate, but both these cells, containing an overproducing plasmid of serine hydroxymethyltransferase, and wild-type cells do have measurable amounts of this form of the coenzyme.  相似文献   

16.
An injection of cortisone acetate at a dose of 5 mg/100 g body weight concomitant with dibutryl cyclic AMP prevents the increase in the activity of rat liver cytosol serine aminotransferase (L-serine: pyruvate aminotransferase, EC 2.6.1.51) elicited by the nucleotide with a lag of about 2 h. If the glucocorticoid is given 2 h prior to the nucleotide inducer, the lag disappears. The inhibitory effect of cortisone acetate gradually decays and is no longer detectable 12 h following its administration. Theophylline, insulin and glucose at doses which affect significantly the level of tyrosine aminotransferase, have no effect on the level of serine aminotransferase and on the cortisone inhibition. The inhibitory effect of the glucocorticoid on the dibutyryl cyclic AMP-mediated increase in serine aminotransferase diminishes with the age of animals. Increase in the enzyme activity by a single dose of glucagon can also be inhibited by cortisone acetate and actinomycin D as in the case with dibutyrl cyclic AMP as an inducer. The possibility of the existence of a specific inhibitory factor which is formed in response to cortisone acetate is discussed.  相似文献   

17.
1. Methanol or formate can replace serine or glycine as supplements for growth on succinate of the auxotrophic mutants 20S and 82G of Pseudomonas AM1, showing that the organism can synthesize glycine and serine in net fashion from C(1) units. 2. Double mutants of Pseudomonas 20S and 82G have been prepared (20ST-1 and 82GT-1) that are unable to grow on succinate+1mm-glyoxylate, succinate+2mm-methanol or methanol alone. 3. Mutants 20ST-1 and 82GT-1 lacked serine-glyoxylate aminotransferase activity, and revertants to the phenotype of 20S and 82G regained serine-glyoxylate aminotransferase activity. A total revertant of 82GT-1 to wild-type phenotype regained activities of serine hydroxymethyltransferase and serine-glyoxylate aminotransferase. 4. The activity of serine-glyoxylate aminotransferase in methanol-grown Pseudomonas AM1 is eightfold higher than in the succinate-grown organism. 5. The combined results show that in Pseudomonas AM1 serine-glyoxylate aminotransferase is necessary for growth on C(1) compounds and is involved in the conversion of methanol into glycine via glyoxylate. 6. It is suggested that the phosphorylated pathway of serine biosynthesis from phosphoglycerate replenishes the supply of alpha-amino groups necessary for the flow of glyoxylate through the main assimilatory pathway during growth on C(1) compounds.  相似文献   

18.
A methionine-auxotropic mutant deficient in homocysteine transmethylation activity was induced from a methylotrophic L-serine-producing derivatives of Pseudomonas MS31. This mutant grown with limited L-methionine had more than 1.7-fold higher serine hydroxymethyltransferase (SHMT) activity than its parent strain. The elevated SHMT activity significantly contributed to the improvement of L-serine accumulation from glycine and methanol. Under the optimum conditions, this mutant accumulated up to 23.9 mg/ml of L-serine. The yield coefficient L-serine from consumed glycine was 89% (mol/mol). The maximum conversion rate of added glycine (19 mg/ml) to L-serine was 77% (mol/mol).  相似文献   

19.
An injection of cortisone acetate at a dose of 5 mg/100 g body weight concomitant with dibutyryl cyclic AMP prevents the increase in the activity of rat liver cytosol serine aminotransferase (L-serine:pyruvate aminotransferase, EC 2.6.1.51) elicited by the nucleotide with a lag of about 2 h. If the glucocorticoid is given 2 h prior to the nucleotide inducer, the lag disappears. The inhibitory effect of cortisone acetate gradually decays and is no longer detectable 12 h following its administration. Theophylline, insulin and glucose at doses which affect significantly the level of tyrosine aminotransferase, have not effect on the level of serine aminotransferase and on the cortisone inhibition. The inhibitory effect of the glucocorticoid on the dibutyryl cyclic AMP-mediated increase in serin aminotransferase diminishes with the age of animall. Increases in the enzyme activity by a single dose of glucagon can also be inhibited by cortisone acetate and actinomycin D as in the case with dibutyryl cyclic AMP as an inducer. The possibility of the existence of a specific inhibitory factor which is formed in response to cortisone acetate is discussed.  相似文献   

20.
The sequence of tryptic and chymotryptic peptides from cytosolic and mitochondrial rabbit liver serine hydroxymethyltransferase are compared to the proposed sequence of a protein coded for by the glyA gene of Escherichia coli. The E. coli glyA gene is believed to code for serine hydroxymethyltransferase. Extensive sequence homology between these peptides were found for the proposed E. coli enzyme in the aminoterminal two-thirds of the molecule. All three proteins have identical sequences from residue 222-231. This sequence is known to contain the lysyl residue which forms a Schiff's base with pyridoxal-P in the two rabbit liver enzymes. These results support the interpretation that the proposed sequence of E. coli serine hydroxymethyltransferase is correct. The data also show that cytosolic and mitochondrial serine hydroxymethyltransferase are homologous proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号