首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 915 毫秒
1.
Mussels (Mytilus edulis L.) are unusual because they thrive in both rocky shore and soft-bottom habitats. Despite their ecological and economic importance, little is known about their spatial structure. Mussels do not generally recruit to bare soft substrate because larvae and postlarvae cannot attach to a bottom of small sediment particles. They attach to hard objects on the sediment surface (especially other mussels), so soft-bottom mussel beds may be spatially organized in ways that are fundamentally different from those on rocky shores. The purpose of our study was to characterize the scales of spatial variability for several mussel abundance parameters in soft-bottom, intertidal M. edulis beds in coastal Maine. We used a random factor nested-ANOVA design of 200 cm2 Cores within 1 m2 Quadrats within 6 m Transects within Positions within bed Sites along 70 km (euclidean distance) of the Maine coast. Based on the literature and our field observations, we hypothesized that Sites and Positions account for most of the spatial variance in soft-botttom mussel beds. We rejected this hypothesis. Sites and Positions were not important in explaining variation in total mussel density, density of new recruits, or density of larger mussels. Although most of the variance in surface silt-clay fraction did occur at these levels, most mussel variation occurred at smaller spatial scales, specifically at the Quadrat scale for new recruits and total mussels and at the Transect scale for larger mussels. Variance in mussel parameters was not closely linked to the silt-clay fraction of surface sediment or to Site rankings of wind exposure and tidal flow. Variance in total mussel density was due primarily to variance in recruitment. No single scale explained more than about half the mussel variance, and no single scale was best at explaining all the mussel parameters. Greater knowledge about mussel bed spatial variability would be useful because it can help direct scale-dependent sampling regimes, field experiments, and coastal management practices.  相似文献   

2.
The interactions between invasive exotic and indigenous species can have profound harmful effects on the recipient community; however, not all such interactions are negative. Facilitation is increasingly recognised as important in shaping natural communities and is believed to vary under different conditions. Earlier studies have shown that the indigenous intertidal mussel Perna perna initially facilitates survival of the invasive Mytilus galloprovincialis in the low mussel zone by providing protection against waves, but later excludes M. galloprovincialis through interference competition for space. Here, we examined interactions between these species in the mid and upper mussel zones, moving mussels to experimental plots in different combinations of densities and species. Mussels were left on the shore for more than a year and treatment effects on mortality, shell length and condition were compared. In the high zone, treatment had no effects and P. perna showed greater mortality than M. galloprovincialis, indicating that its exclusion from the high shore is due to emersion stress. In the mid zone, treatment had no significant effects on M. galloprovincialis, but multiple comparisons among treatments involving P. perna showed that facilitation occurred. P. perna survived better at higher densities, but survived even better when mixed with the physiologically more tolerant M. galloprovincialis. Length data indicated both inter- and intraspecific competition for P. perna in the mid zone. Whereas facilitation occurs strongly in the low zone (P. perna facilitates M. galloprovincialis) and weakly in the mid zone (M. galloprovincialis facilitates P. perna), the lack of facilitation in the high zone suggests that the probability of facilitation is not linearly linked to increasing physical stress. Instead it is likely to be hump shaped: relatively unimportant under conditions that are benign for a particular species, significant under more severe conditions, and overridden by physical stress under very harsh conditions.  相似文献   

3.
尺度与密度:测定不同尺度下的种群密度   总被引:2,自引:0,他引:2       下载免费PDF全文
群落中的种群密度由于空间尺度的变化而存在着一定差异,那么,某一种群的密度随着空间尺度的变化会发生怎样的变化?抑或某一物种相对于另一物种而言,随着空间尺度的变化其密度会怎样变化?这是与尺度有关的种群密度问题,当属生态学的基本问题.该文提出这样的问题,并把不同尺度下的种群密度称之为尺度密度(scale density).O-Ring函数的实质是计算不同尺度下的种群密度.因此,在研究实例中,应用O-Ring函数计算了典型草原处于不同恢复阶段的羊草(Leymuschinensis)种群、米氏冰草(Agropyron michnoi)种群,以及米氏冰草种群相对于羊草种群在不同尺度下的种群密度,结果发现:羊草和米氏冰草2个种群的尺度密度,在小尺度范围内严重退化群落均高于恢复演替群落,这一结果验证了“胁迫梯度假说”,同时表明该结果是放牧胁迫下正相互作用所致;通过比较羊草种群与米氏冰草相对于羊草的尺度密度发现,在严重退化的群落中,羊草与米氏冰草的种间关联为负联结,这种负联结是由正相互作用引起的,而在恢复8年和恢复21年群落中,二者之间是正联结,当为竞争所致.该实例说明分析种群密度随尺度变化的规律对于深入认识生态学问题可能会有很大帮助.  相似文献   

4.
Abstract Theoretical models imply that spatial scale derives its greatest importance through interactions between density-dependent processes and spatial variation in population densities and environmental variables. Such interactions cause population dynamics on large spatial scales to differ in important ways from predictions based on measurements of population dynamics at smaller scales, a phenomenon called the scale transition. These differences can account for large-scale population stability and species coexistence. The interactions between density dependence and spatial variation that lead to the scale transition can be understood by the process of non-linear averaging, which shows how variance originating on various spatial scales contributes to large-scale population dynamics. Variance originating below the scale of density dependence contributes less to the scale transition as the spatial scale of the variation declines, while variation originating on or above the scale of density dependence contributes independently of the spatial scale of the variation.  相似文献   

5.
In the past decade, theoretical ecologists have emphasized that local interactions between predators and prey may invoke emergent spatial patterning at larger spatial scales. However, empirical evidence for the occurrence of emergent spatial patterning is scarce, which questions the relevance of the proposed mechanisms to ecological theory. We report on regular spatial patterns in young mussel beds on soft sediments in the Wadden Sea. We propose that scale-dependent feedback, resulting from short-range facilitation by mutual protection from waves and currents and long-range competition for algae, induces spatial self-organization, thereby providing a possible explanation for the observed patterning. The emergent self-organization affects the functioning of mussel bed ecosystems by enhancing productivity and resilience against disturbance. Moreover, self-organization allows mussels to persist at algal concentrations that would not permit survival of mussels in a homogeneous bed. Our results emphasize the importance of self-organization in affecting the emergent properties of natural systems at larger spatial scales.  相似文献   

6.
Fire is an indissoluble component of ecosystems, however quantifying the effects of fire on vegetation is a challenging task as fire lies outside the typical experimental design attributes. A recent simulation study showed that under increased fire regimes positive tree–tree interactions were recorded (Bacelar et al., 2014). Data from experimental burning plots in an African savanna, the Kruger National Park, were collected across unburnt and annual burn plots. Indices of aggregation and spatial autocorrelation of the distribution of trees between different fire regimes were explored. Results show that the distribution of trees under fire were more clumped and exhibited higher spatial autocorrelation than in unburnt plots. In burnt plots spatial autocorrelation values were positive at finer scales and negative at coarser scales potentially indicating co-existence of facilitation and competition within the same ecosystem depending on the scale. The pattern derived here provides inference for (a) fire acting as an increasing aggregation & spatial autocorrelation force, (b) tree survival under fire regimes is potentially facilitated by forming patches of trees and (c) scale-dependent facilitation and competition coexisting within the same ecosystem with finer scale facilitation and coarser scale competition.  相似文献   

7.
Recent years have seen a growing body of evidence showing that plant competition and facilitation usually operate simultaneously to drive population dynamics, community structure and ecosystem functions. However, the potential role of facilitation in spatial patterning of plant populations has rarely been explicitly examined. We used a ‘zone‐of‐influence’ model to explore how facilitation interacts with competition and abiotic stress to determine the spatial patterning of populations during density‐dependent mortality. Model simulations revealed that started with the same clustered pattern, the final pattern of simulated populations depended strongly on the interaction among facilitation, stress level and size‐symmetry of competition. Asymmetric competition consistently led to immediate and non‐random mortality towards regularity, thus rapidly decayed the initially clustered pattern to final patterns of small‐scale regularity and large‐scale randomness. The role of symmetric competition in decaying the clustered pattern increased with abiotic stress because stress‐induced reductions in plants’ growth rates can make individuals in high‐density clusters more likely to die even from symmetric competition. Facilitation played a clear role in counteracting the effect of stress, thus tended to maintain the degree of clustering of the pattern during density‐dependent mortality. This is because the amelioration of harsh conditions by neighboring plants relieved the reductions in plant growth due to competition, thus slowed down and reduced the mortality inside clusters (relative to that outside clusters). Moreover, the effect of facilitation appeared to increase with abiotic stress. Our results indicate that facilitation among neighboring plants should partially be responsible for clustered population spatial patterns observed in stressful environments, even though its contribution relative to other factors (e.g. local dispersal and environmental heterogeneity) remains to be evaluated. In addition, the potential influence of facilitation on self‐thinning trajectory should be explicitly examined in future modeling and experimental studies considering its effects on density‐dependent mortality.  相似文献   

8.
Biotic interactions via the struggle for control of energy and the interactive effects of biota with their physical environment characterize Van Valen's Red Queen (VRQ). Here, we review new evidence for and against a VRQ view of the world from studies of increasing temporal and spatial scales. Interactions among biota and with the physical environment are important for generating and maintaining diversity on diverse timescales, but detailed mechanisms remain poorly understood. We recommend directly estimating the effect of biota and the physical environment on ecological and evolutionary processes. Promising approaches for elucidating VRQ include using mathematical modelling, controlled experimental systems, sampling and processes-oriented approaches for analysing data from natural systems, while paying extra attention to biotic interactions discernable from the fossil record.  相似文献   

9.
We examined the spatial heterogeneity in three sessile rocky shore organisms, the mussel Perna perna, the barnacle Octomeris angulosa (Sowerby) and the red alga Gelidium pristoides (Turn.) at a range of continuous local scales along horizontal transects within mid- and upper mussel beds of South African shores. We also examined the relationships between variability of organisms and topographic features (rock depressions, slope, aspect), and between mussel, barnacle and algal variability over the same scales. To estimate spatial heterogeneity, we analyzed scaling properties of semivariograms using a fractal approach. Relationships between different variables at the different scales were examined by cross-semivariograms. Spatial dependence of P. perna variability increased with spatial dependence of topographic variability, so that scaling regions of mussel and topographic distributions corresponded well. This relationship often improved with larger local scales (mussel cover increased with depressions, steeper slope and aspect towards waves), while at smaller spatial scales, variability in mussel cover was less well explained by variability in topography. The variability of the barnacle O. angulosa exhibited spatial dependence, even on topographically unstructured shores. In contrast, the distribution of the alga G. pristoides revealed high fractal dimensions, showing spatial independence on topographically unstructured shores. Algae also showed a very strong negative relationship with mussels at most local scales, and a negative relationship with barnacles in upper zones, especially at larger local scales. Barnacles may show clear spatial dependence because of hydrodynamics (at larger local scales) and the need to find a future mate in close proximity (at smaller local scales), while algae may show a strong negative relationship with mussels because of competition for space.  相似文献   

10.
Hierarchically scaled surveys were carried out on beds of the brown mussel Perna perna (Linnaeus) on the South coast of South Africa. The object was to assess spatial and temporal variations in the complexity of mussel beds and to investigate relationships between mussel bed complexity and mussel recruitment. Complexity was divided into three components: physical complexity; demographic complexity; associated biota. A series of variables within each component were recorded at two different scales (10 and 50 cm) within nested quadrats on three separate occasions. The nested ANOVA design explicitly incorporated spatial scale as levels of the ANOVA. These scales were: shores (areas 1 km in length separated by 25 km); transects (areas 20 m in length separated by 100s of meters); 50x50-cm quadrats separated by meters and 10x10-cm quadrats separated by cm) This approach was intended to generate hypotheses concerning direct associations between recruitment and complexity versus co-variation due external processes. Three main questions were addressed: (1) At what scale does each variable of complexity exhibit greatest significant variation? (2) At these scales is there similar ranking of variables of complexity and recruitment? (3) Within this/these scales, is there any significant relationship between the variables measured and mussel recruitment? On two occasions (Nov. 97 and Mar. 98) the majority of variables showed greatest significant variation at the transect-scale. On a third occasion (Oct. 97) most variables showed greatest significant variation at the quadrat-scale and the site-scale. On all occasions a markedly high percentage of the variation encountered also occurred at the smallest scale of the study, i.e., the residual scale of the ANOVA analyses. Some similarity in the ranking of variables occurred at the transect scale. Within the transect-scale, there was little indication of any relationship between variables of complexity and recruitment. Relationships were inconsistent either among transects or among sampling occasions. Overall, the results suggest that a high degree of variation in mussel bed complexity consistently occurs at very small scales. High components of variance generally also occur at one or more larger scales; however, these scales vary with season. Mussel recruitment does not appear to be directly affected by complexity of mussel beds. Instead it appears external factors may influence both complexity and recruitment independently. In addition recruitment may influence complexity rather than vice versa.  相似文献   

11.
Facilitation (positive plant–plant interactions) is a potential means to accelerate vegetation restoration in arid areas. Shrubs can accelerate vegetation recovery by means of soil amelioration, but this effect has not been evaluated at large spatial scales or across scales. Here, we examined the facilitative function of shrub change across spatial scales at a desert steppe in Mongolia. Using a high-resolution satellite image, we established five 2500 m2 plots in each of three shrub density classes (low, moderate, high) in a desert steppe in Mongolia. To evaluate the facilitative functions of shrubs at multiple spatial scales, we recorded the total number of plant species at three nested spatial scales in each plot: 25, 400, and 2500 m2. The facilitative effect of shrubs on plant species richness was more pronounced at larger scales. Denser shrub communities increased plant species diversity at a larger scale. However, the increased taxonomic diversity was not clearly related to increased functional diversity in this system. This scale dependency in species diversity can be explained by the degree to which spatial heterogeneity of habitats within the plots increased as plot size increased. These results support the hypothesis of scale-dependent changes in the balance between facilitation and competition. Therefore, transplanting shrub saplings at high-density and a larger scale could potentially improve the success of vegetation restoration in arid regions.  相似文献   

12.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

13.
Abstract. Semi-arid woodlands are two-phase mosaics of canopy and inter-canopy patches. We hypothesized that both aboveground competition (within canopy patches), and below-ground competition (between canopy patches), would be important structuring processes in these communities. We investigated the spatial pattern of trees in a Pinus edulis-Juniperus monosperma woodland in New Mexico using Ripley's K-function. We found strong aggregation of trees at scales of 2 to 4 m, which indicates the scale of canopy patches. Canopy patches were composed of individuals of both species. Crown centers of both species were always less aggregated than stem centers at scales less than canopy patch size, indicating morphological plasticity of competing crowns. In the smallest size classes of both species, aggregation was most intense, and occurred over a larger range of scales; aggregation decreased with increasing size as is consistent with density-dependent mortality from intraspecific competition. Within canopy patches, younger trees were associated with older trees of the other species. At scales larger than canopy patches, younger trees showed repulsion from older conspecifics, indicating below-ground competition. Hence, intraspecific competition was stronger than interspecific competition, probably because the species differ in rooting depth. Woodland dynamics depend on the scale and composition of canopy patches, aggregated seed deposition and facilitation, above- and below-ground competition, and temporal changes in the spatial scale of interactions. This woodland is intermediate in a grassland-forest continuum (a gradient of increasing woody canopy cover) and hence we expected, and were able to detect, the effects of both above- and below-ground competition.  相似文献   

14.
The invasion of natural habitats by nonnative species is affected by both native biodiversity and environmental conditions; however few tests of facilitation between native community members and nonnative species have been conducted along disturbance and stress gradients. There is strong evidence for an increase in facilitation between native plant species with increasing levels of natural environmental stress, however it is unknown whether these same positive interactions occur between nonnative invaders and native communities. I investigated the effects of natural stress on community interactions between native heathland species and nonnative species with two field studies conducted at the landscape and community scale. At the landscape scale of investigation, nonnative species richness was positively related to native species richness. At the community level, nonnative invaders experienced facilitation with natives in the most stressful zones, whereas they experienced competition with native plants in the less stressful zones of the heathlands. Due to the observational nature of the landscape scale data, it is unclear whether nonnative diversity levels are responding positively to extrinsic factors or to native biodiversity. The experimental component of this research suggests that native community members may ameliorate stressful environmental conditions and facilitate invasion into high stress areas. I present a conceptual model which is a modification of the Shea and Chesson diversity-invasibility model and includes both facilitation as well as competition between the native community and nonnative invaders at the community level, summing to an overall positive relationship at the landscape scale.  相似文献   

15.
Steen H  Mysterud A  Austrheim G 《Oecologia》2005,143(3):357-364
Inter-specific competition, facilitation and predation influence herbivore assemblages, but no study has experimentally explored the interactions between large ungulates and small rodents. In a fully replicated, landscape scale experiment, we manipulated densities of domestic sheep in mountain pastures in Norway. We then determined population growth and densities of rodents by live trapping in each of the areas with different sheep densities. We found that the (summer) population growth rate and autumn density of the field vole (Microtus agrestis) was lower at high sheep density. This provides the first experimental evidence of negative interactions between an ungulate and small rodent species. There was no effect on the bank vole (Clethrionomys glareolus), whose diet differs from sheep. Sheep density, therefore, potentially alters the pattern of inter-specific population synchrony amongst voles. Our study shows that negative interactions between large ungulates and small rodents may be species-specific and negative population consequences for the rodent population appear above threshold ungulate densities.Electronic supplementary material is available for this article at  相似文献   

16.
Scale-dependent interactions and community structure on cobble beaches   总被引:4,自引:0,他引:4  
Recent theory suggests that scale-dependent interaction between facilitation and competition can generate spatial structure in ecological communities. The application of this hypothesis, however, has been limited to systems with little underlying heterogeneity. We evaluated this prediction in a plant community along an intertidal stress gradient on cobble beaches in Rhode Island, USA. Prior studies have shown that Spartina alterniflora facilitates a forb-dominated community higher in the intertidal by modifying the shoreline environment. We tested the hypothesis that, at a smaller scale, Spartina competitively excludes forb species, explaining their marked absence within the lower Spartina zone. Transplant experiments showed forb species grow significantly better in the Spartina zone when neighbours were removed. Removal of the Spartina canopy led to a massive emergence of annual forbs, showing that competition limits local occupation. These findings indicate that interaction of large-scale facilitation and small-scale competition drives plant zonation on cobble beaches. This study is the first to provide empirical evidence of scale-dependent interactions between facilitation and competition spatially structuring communities in heterogeneous environments.  相似文献   

17.
Studies on tree communities have demonstrated that species diversity can enhance forest productivity, but the driving mechanisms at the local neighbourhood level remain poorly understood. Here, we use data from a large‐scale biodiversity experiment with 24 subtropical tree species to show that neighbourhood tree species richness generally promotes individual tree productivity. We found that the underlying mechanisms depend on a focal tree's functional traits: For species with a conservative resource‐use strategy diversity effects were brought about by facilitation, and for species with acquisitive traits by competitive reduction. Moreover, positive diversity effects were strongest under low competition intensity (quantified as the total basal area of neighbours) for acquisitive species, and under high competition intensity for conservative species. Our findings demonstrate that net biodiversity effects in tree communities can vary over small spatial scales, emphasising the need to consider variation in local neighbourhood interactions to better understand effects at the community level.  相似文献   

18.
(1) The effects of facilitation on the structure and dynamics of plant populations have not been studied so widely as competition. The UV-B radiation, as a typical environmental factor causing stress, may result in direct stress and facilitation. (2) The effects of UV-B radiation on intraspecific competition and facilitation were investigated based on the following three predictions on self-thinning, size inequality, and phenotypic plasticity: i) Self-thinning is the reduction in density that results from the increase in the mean biomass of individuals in crowded populations, and is driven by competition. In this study, the mortality rate of the population is predicted to decrease from UV-B irradiance. ii) The size inequality of a population increases with competition intensity because larger individuals receive a disproportionate share of resources, thereby leaving limited resources for smaller individuals. The second hypothesis assumes that direct stress decreases the size inequality of the population. iii) Phenotypic plasticity is the ability to alter one’s morphology in response to environmental changes. The third hypothesis assumes that certain morphological indices can change among the trade-offs between competition, facilitation, and stress. These predictions were tested by conducting a field pot experiment using mung beans, and were supported by the following results: (3) UV-B radiation increased the survival rate of the population at the end of self-thinning. However, this result was mainly due to direct stress rather than facilitation. (4) Just as competitor, facilitation was also asymmetric. It increased the size inequality of populations during self-thinning, whereas stress decreased the size inequality. (5) Direct stress and facilitation influence plants differently on various scales. Stress inhibited plant growth, whereas facilitation showed the opposite on an individual scale. Stress increased survival rate, whereas facilitation increased individual variability on the population scale. (6) Trade-offs between competitions, facilitation, and direct stress varied in different growing stages.  相似文献   

19.
Spatially disjunct effects of co-occurring competition and facilitation   总被引:4,自引:0,他引:4  
Little is known of the co‐occurrence and implications of competitive and facilitative interactions within sites. Here we show spatially disjunct competition and facilitation at forest edges, with beneficial influences of trees on seedling growth via increased ectomycorrhizal infection apparent from 12 to 20 m while closer to trees seedling growth is negatively correlated with canopy closure. As a result, seedling growth is maximized at intermediate distances. Facilitative interactions were nonlinear: being within 15.7 m of a tree maximized seedling mycorrhizal infection; while competitive effects were correlated with canopy closure, which was related to distance and generally scales with density. These patterns result in a positive correlation of tree density and seedling growth at low densities of trees, and negative correlation at higher densities because of competition. A spatial model suggests that plant communities are a mosaic of positive and negative interactions, which may contribute to population homeostasis and plant diversity.  相似文献   

20.
The stress gradient hypothesis posits that facilitation and stress are positively correlated. The hump-shaped hypothesis, on the contrary, proposes that facilitation is greater at intermediate stress levels. The relationship between facilitation and environmental stress is commonly studied at small spatial scales and/or considering few species; thus, the implications of facilitation at a community level remain poorly understood. Here, we analyzed local co-occurrence patterns of all plant species at 25 sites within the subtropical Andes to evaluate the role of facilitation and competition as drivers of community structure. We considered a wide latitudinal gradient (19–26°S) that incorporates great variation in aridity. No previous studies have attempted to study these patterns across such a broad scale in warm deserts. Each locality was sampled at two scales (quadrat and patch), and co-occurrence was analyzed via null models. Furthermore, we tested for a relationship between plant co-occurrences and environmental aridity. Resulting patterns depended on life form. When all species were considered, negative associations were found, indicating competition. Woody/cactus life forms tended to be associated across communities, suggesting that there is facilitation between these life forms. Additionally, and unlike previous studies, we found positive associations among shrubs. The strength of the association between woody species changed non-monotonically with aridity. Herbs showed an inverted hump-shaped relationship, albeit ranging mostly among neutral values. Independent of the association type exhibited by different life forms, our community level results do not support current stress gradient hypotheses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号