首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
New World primates (NWPs) exhibit a compensated form of resistance to gonadal steroid hormones. We demonstrated recently that estrogen resistance in NWP cells was associated with the overexpression of two proteins, a nonreceptor-related, dominant-negative-acting estrogen response element (ERE)-binding protein (ERE-BP) and an intracellular estradiol-binding protein (IEBP). Based on the N-terminal sequences of tryptic fragments of IEBP isolated from a 17beta-estradiol (E2) affinity column we cloned a full-length cDNA for IEBP from the estrogen-resistant NWP cell line, B95-8. Subsequent sequence analysis revealed 87% sequence identity between the deduced peptide for IEBP and human Hsp27. When hormone-responsive, wild-type Old World primate (OWP) cells were transiently transfected with IEBP cDNA, E2-directed ERE reporter luciferase activity was reduced by 50% compared with vector only-transfected OWP cells (p < 0.0018). When IEBP and ERE-BP were cotransfected, ERE promoter-reporter activity was reduced by a further 60% (p < 0.0001). Electrophoresis mobility shift analyses showed that IEBP neither bound to ERE nor competed with the estrogen receptor (ER) for binding to ERE. However, there was evidence of protein-protein interaction of IEBP and ERalpha; IEBP was coimmunoprecipitated with anti-ERalpha antibody in wild-type cells stably transfected with IEBP. A specific interaction between ERalpha and IEBP was confirmed in glutathione S-transferase pull-down and yeast two-hybrid assays. Data indicate that the Hsp27-related IEBP interacts with the ligand binding domain of the ERalpha. In summary, by inhibiting the ERalpha-E2 interaction, IEBP acts to squelch ERalpha-directed ERE-regulated transactivation and promote estrogen resistance in NWP cells.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Although rapid signaling by estrogen at the plasma membrane is established, it is controversial as to the nature of the receptor protein. Estrogen may bind membrane proteins comparable to classical nuclear estrogen receptors (ERs), but some studies identify nonclassical receptors, such as G protein-coupled receptor (GPR)30. We took several approaches to define membrane-localized estrogen-binding proteins. In endothelial cells (ECs) from ERalpha/ERbeta combined-deleted mice, estradiol (E2) failed to specifically bind, and did not activate cAMP, ERK, or phosphatidyinositol 3-kinase or stimulate DNA synthesis. This is in contrast to wild-type ECs, indicating the lack of any functional estrogen-binding proteins in ERalpha/ERbeta combined-deleted ECs. To directly determine the identity of membrane and nuclear-localized ER, we isolated subcellular receptor pools from MCF7 cells. Putative ER proteins were trypsin digested and subjected to tandem array mass spectrometry. The output analysis identified membrane and nuclear E2-binding proteins as classical human ERalpha. We also determined whether GPR30 plays any role in E2 rapid actions. MCF7 (ER and GPR30 positive) and SKBR-3 (ER negative, GPR30 positive) cells were incubated with E2. Only MCF7 responded with significantly increased signaling. In MCF7, the response to E2 was not different in cells transfected with small interfering RNA to green fluorescent protein or GPR30. In contrast, interfering RNA to ERalpha or ER inhibition prevented rapid signaling and resulting biology in MCF7. In breast cancer and ECs, nuclear and membrane ERs are the same proteins. Furthermore, classical ERs mediate rapid signals induced by E2 in these cells.  相似文献   

19.
20.
Anderson I  Gorski J 《Biochemistry》2000,39(13):3842-3847
Estrogen regulation of the rat prolactin gene requires sequences within the DNase I hypersensitive site II (HSII). We have used overexpressed mouse estrogen receptor alpha (ERalpha) protein to study interactions of ERalpha with an imperfect estrogen response element (ERE) and four ERE half-site sequences from HSII. We confirmed that ERalpha has higher affinity for ERE half-sites than for the imperfect ERE. As expected, the imperfect ERE formed a complex with ERalpha similar to that between mERalpha and a consensus ERE in gel shift assays. The ERalpha complex with half-sites, however, had faster mobility on a 4% polyacrylamide gel than the ERalpha complex with a consensus ERE, indicating that the complexes had different compositions. Ferguson analysis revealed that the ERalpha/half-site complex had a larger molecular weight and higher negative charge than the ERalpha/consensus ERE complex. Similar results were observed with purified human ERalpha, showing that the ERalpha/half-site complex contained only ERalpha and oligonucleotides. These results are best explained by a model in which a dimer of ERalpha is bound to two half-site oligonucleotides. We propose that two ERalpha dimers may interact with the four ERE half-sites in HSII to influence estrogen regulation of this gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号