首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial measurements of the time-varying wall shear rate at two sites in a compliant cast of a human aortic bifurcation are presented. The shear rates were derived from flow velocities measured by laser Doppler velocimetry (LDV) near the moving walls of the cast. To derive these shear rate values, the distance from the velocimeter sampling volume to the cast wall must be known. The time variation of this distance was obtained from LDV measurements of the velocity of the wall itself.  相似文献   

2.

Purpose

There is a long-standing interest in the study of retinal blood flow in humans. In the recent years techniques have been established to measure retinal perfusion based on optical coherence tomography (OCT). In the present study we used a technique called dual-beam bidirectional Doppler Fourier-domain optical coherence tomography (FD-OCT) to characterize the effects of 100% oxygen breathing on retinal blood flow. These data were compared to data obtained with a laser Doppler velocimeter (LDV).

Methods

10 healthy subjects were studied on 2 study days. On one study day the effect of 100% oxygen breathing on retinal blood velocities was studied using dual-beam bidirectional Doppler FD-OCT. On the second study day the effect of 100% oxygen breathing on retinal blood velocities was assessed by laser Doppler velocimetry (LDV). Retinal vessel diameters were measured on both study days using a commercially available Dynamic Vessel Analyzer. Retinal blood flow was calculated based on retinal vessel diameters and red blood cell velocity.

Results

As expected, breathing of pure oxygen induced a pronounced reduction in retinal vessel diameters, retinal blood velocities and retinal blood flow on both study days (p<0.001). Blood velocity data correlated well between the two methods applied under both baseline as well as under hyperoxic conditions (r = 0.98 and r = 0.75, respectively). Data as obtained with OCT were, however, slightly higher.

Conclusion

A good correlation was found between red blood cell velocity as measured with dual-beam bidirectional Doppler FD-OCT and red blood cell velocity assessed by the laser Doppler method. Dual-beam bidirectional Doppler FD-OCT is a promising approach for studying retinal blood velocities in vivo.  相似文献   

3.
Kux  J.; Zeiske  E.; Osawa  Y. 《Chemical senses》1988,13(2):257-265
The velocity field of the flow in the olfactory organ of a fish,exemplified by the swordtail Xiphophorus helleri, was investigatedby a three-component laser Doppler velocimetry (LDV) systemin a simulated stationary model flow at an enlarged scale, butconserving hydrodynamic similarity. Both the crossed beam andthe reference beam methods were applied to study the inflowphase. The complexity of the vector field is depicted in sectionalviews by isolines and arrow patterns. The power of the LDV techniqueand model simulation for such investigations is demonstrated.  相似文献   

4.
Spectrum analysis of the Doppler signals was performed 0.5 tube diameters downstream from an axisymmetric constriction with an area reduction of 80 percent in steady flow at a jet Reynolds number of 2840. Both pulsed and continuous wave (CW) Doppler spectra showed significant reverse flow components in the separated flow. The pulsed Doppler spectra exhibited sudden changes when the sample volume crossed the shear layer between the center jet and the separated flow. A power spectrum equation was theoretically derived from continuity of flow to define the Doppler shift frequency for the shear layer velocity. The CW Doppler spectrum showed a minimum spectrum density at a frequency which equalled the shear layer Doppler shift frequency derived from the equation. The pulsed spectra exhibited the sudden changes at the same frequency as well.  相似文献   

5.
Pulsed ultrasound Doppler velocity meters (PUDVM) permit noninvasive blood velocity measurements. The emitted ultrasound beam characteristics primarily determine the resolution of the instrument when recording velocity profiles. The sample volume, the small region over which velocity information data are detected, was found to be > 2·3 mm3 depending on the transducer disk dia., distance in front of the disk, sampling time increment, and pulse length. The shape of the sample volume approximates a cylinder in the near field and a frustrum of a cone in the far field. The end surfaces of the sample volume were affected by the emitted pulse shape. Ultrasonic beam cross-sections were found to be smaller than predicted by theory due to the finite threshold levels of the PUDVM. The variation of the sample volume with range was illustrated by steady laminar flow velocity profile measurements in rigid tubes. The accuracy of velocity measurements was within 5 per cent with slightly larger deviations occurring near the walls due to the finite sample volume.  相似文献   

6.
For the purpose of improving accuracy of noninvasive flow measurements in small (1–2 mm diameter) blood vessels, an existing 20 MHz pulsed ultrasound Doppler velocimeter (PUDVM) has been augmented to allow fast Fourier transformation (FFT) of its Doppler shift signal. The modified instrument was used to collect velocity spectra for a benchtop test section delivering precise Poiseuille flows at velocities in the range of physiological interest. The velocity spectra demonstrated a substantial degree of broadening, much of which was attributable to the geometry of the finite sample volume size. Several spectral indices were studied as a function of flow field variables. Results showed that the intensity-weighted mean Doppler shift frequency, when converted to its corresponding velocity vM, agreed very closely with the theoretically predicted local fluid velocity. Measurement linearity and repeatability were evaluated for a number of system variables, indicating that FFT performance was essentially unaffected by several parameters capable of causing major degradation of (phasic) Doppler shift signals produced by conventional zero-crossing-counter circuitry. As presently configured, the augmented PUDVM instrument is fully capable of detailed flow field mapping in small subcutaneous vessels such as human digital arteries.  相似文献   

7.
Laser Doppler velocimetry is a technique for continuous estimation of changing blood flow in the surface of a tissue and does not require invasion of the circulation. This technique is based upon the Doppler principle that a shift in the frequency of an electromagnetic wave emitted or reflected from a moving object is proportional to the velocity of the object. The capacity of Laser Doppler velocimetry to estimate changes in intestinal mucosal blood flow was tested in a canine free flow preparation. In anesthetized dogs in which a segment of ileum was isolated, simultaneous measurements of instantaneous changes in total blood flow (measured with the electromagnetic blood flow meter) and instantaneous changes in presumed mucosal blood flow (using laser Doppler velocimetry) were obtained. Determinations were made during conditions of rest, prostacyclin induced vasodilation and norepinephrine induced vasoconstriction. Changes in laser Doppler velocimeter readings were qualitatively similar to and temporally related to changes in total blood flow to the gut segment during administration of the vasoactive drugs. The magnitude and direction of changes with the two measurements were significantly correlated. Stabilizing the laser probe on the mucosal surface to ensure reproducible readings proved technically difficult. Pharmacologically induced changes in laser Doppler velocimeter estimated changes in flow were more readily correlated with changes in electromagnetic flow meter readings than were control values obtained with the two methods.  相似文献   

8.
We examined the extent of renal medullary blood flow (MBF) autoregulation in pentobarbital-anesthetized rabbits. Two methods for altering renal arterial pressure (RAP) were compared: the conventional method of graded suprarenal aortic occlusion and an extracorporeal circuit that allows RAP to be increased above systemic arterial pressure. Changes in MBF were estimated by laser-Doppler flowmetry, which appears to predominantly reflect erythrocyte velocity, rather than flow, in the kidney. We compared responses using a dual-fiber needle probe held in place by a micromanipulator, with responses from a single-fiber probe anchored to the renal capsule, to test whether RAP-induced changes in kidney volume confound medullary laser-Doppler flux (MLDF) measurements. MLDF responses were similar for both probe types and both methods for altering RAP. MLDF changed little as RAP was altered from 50 to >or=170 mmHg (24 +/- 22% change). Within the same RAP range, RBF increased by 296 +/- 48%. Urine flow and sodium excretion also increased with increasing RAP. Thus pressure diuresis/natriuresis proceeds in the absence of measurable increases in medullary erythrocyte velocity estimated by laser-Doppler flowmetry. These data do not, however, exclude the possibility that MBF is increased with increasing RAP in this model, because vasa recta recruitment may occur.  相似文献   

9.
Recent applications of 20 MHz pulsed ultrasound Doppler velocimetry (PUDVM) in microsurgical research have necessarily employed piezoelectric crystals whose diameter is not negligible compared to the lumen size (1-2 mm) of many vessels of interest. A three-dimensional numerical model was developed to explore relationships between actual and detected flow field parameters, for (steady) Poiseuille flow, when appreciable velocity gradients exist within the PUDVM sample volume. Validation studies showed that highly accurate velocity profiles could be obtained in the limiting case of a very small sample volume (0.1 mm radius), but that for currently employed crystals (approximately equal to 0.5 mm radius) there was appreciable underestimation of the centersteam velocity, and appreciable overestimation of the flow stream diameter. Errors in perceived velocity and flow rate were found to be relatively insensitive to perturbations in the sample volume thickness, in the size of the sampling range increment, or in the angle of insonation beam divergence. By contrast, these apparent flow parameters were found to be very sensitive to perturbations of sample volume diameter or of the Doppler angle. Small variations in the degree of partial sample volume overlap of the flowstream periphery were shown to be capable of causing large fluctuations in apparent flow stream diameter.  相似文献   

10.
Several methods are available to detect atherosclerotic lesions with a severe degree of stenosis (>70%), but the diagnosis of atherosclerotic lesions with no stenosis or with a minor degree of stenosis (<20%), is problematic. Hemodynamics associated with stenotic lesions are well described by the relationship of blood pressure and blood flow velocity, both as a function of time and localization (along the length and cross-section of the vessel). The use of this relationship in the clinic is difficult because no precise information is available about the geometry and branching of arteries, blood viscosity, and the velocity distribution over the cross-sectional area of the blood vessel. Besides, the invasiveness of the technique to measure arterial pressure as a function of time and localization does not allow routine application in patients. Because of these limitations, alternative methods have been developed. The degree and extensiveness of atherosclerotic disease can, for instance, be estimated from the changes in maximum blood flow velocity and in velocity profile, i.e., velocity distribution along the cross-section of the vessel. Moreover, the delay between simultaneously recorded arterial blood flow velocity tracings (pulse-wave velocity determination) is used to assess the elastic properties of the vessel. Changes in velocity profile occur at relatively slight degrees of arterial stenosis (around 20%), so that determination of these profiles along diseased arteries may contribute to the early diagnosis of atherosclerotic lesions. In man, transcutaneous information about the maximum and mean blood flow velocities over the cross-sectional area of the artery as an instantaneous function of time as well as the flow pattern can be obtained online with continuous wave Doppler flowmeters, at least when audio spectrum analysis is used as a processing technique. Velocity profiles can be determined with multichannel pulsed Doppler systems if the resolution of the system is adequate and a sufficient number of sample volumes can be obtained, limiting the interpolation between these samples. The on-line recording of velocity profiles can be facilitated by combining the pulsed Doppler device with either a velocity imaging system or a B-mode scan. In systems with a high resolution (sample distance 0.5 mm), one should be able to detect local disturbances in the velocity profile at the site of the lesion (due to local increases in shear stress) and proximal to the lesion (due to reflections), so that lesions with a minor degree of stenosis can be detected. In resistive systems (e.g., internal carotid arteries) in which the relationship between pressure and velocity changes during the cardiac cycle is relatively simple, the elasticity of the arterial wall can be determined by relating the relative diameter changes of the vessel, determined on-line with multichannel pulsed Doppler systems, to the instantaneous velocity pulse. Although the detection of atherosclerotic lesions at an early stage of the disease with sophisticated Doppler devices looks promising, further clinical evaluation is required.  相似文献   

11.
12.
目的:对照电针和西比灵(盐酸氟桂利嗪)的效应,探讨电针改善椎-基底动脉供血不足(VBI)所致内耳微循环障碍的机理及电针对前庭-眼反射(VOR)的影响。方法:组织硬化剂-775注射液注射致家兔左侧颈椎横突软组织建立椎动脉型颈椎病(VCS)模型,采用直线加速度(LA)和水平旋转(HR)诱发眼震电图(ENG)、经颅多谱勒(TCD)、激光多谱勒血流计(LDF)和血液流变学,检测VBI家兔NEG频率、基底动脉(BA)血流速度、内耳血流量(IEBF)、血液粘度和细胞流变性变化。结果:模型组ENG频率、BA血流速度和IEBF显著降低,全血中、低切变率粘度和红细胞聚集指数(EDI)显著增高。西比灵可显著降低全血粘度和EDI,加快BA收缩期血流速度(Vs),但对舒张期血流速度(Vd)和平均血流速度(Vm)无明显作用。电针不能降低血液粘度和EDI无明显作用,但改善IEBF和LA诱发的ENG作用较西比灵显著,并有增快Vs、Vd和Vm的趋势,电针和西比灵对HR诱发的ENG均无改善作用。结论:VBI所致内耳微循环障碍可引起前庭和水平半规管功能障碍,电针可能通过神经一体液调节改善VBI,并可能主要通过增强内耳微循环局部调节改善内耳血供,恢复前庭囊斑对LA的敏感性。电针效应优于西比灵。VBI模型前庭器官内血流分配及前庭信号转导可能存在复杂的机制,有待深入研究。  相似文献   

13.

Introduction

Chemotherapy may induce deleterious effects in normal tissues, leading to organ damage. Direct vascular injury is the least characterized side effect. Our aim was to establish a real-time, in vivo molecular imaging platform for evaluating the potential vascular toxicity of doxorubicin in mice.

Methods

Mice gonads served as reference organs. Mouse ovarian or testicular blood volume and femoral arterial blood flow were measured in real-time during and after doxorubicin (8 mg/kg intravenously) or paclitaxel (1.2 mg/kg) administration. Ovarian blood volume was imaged by ultrasound biomicroscopy (Vevo2100) with microbubbles as a contrast agent whereas testicular blood volume and blood flow as well as femoral arterial blood flow was imaged by pulse wave Doppler ultrasound. Visualization of ovarian and femoral microvasculature was obtained by fluorescence optical imaging system, equipped with a confocal fiber microscope (Cell-viZio).

Results

Using microbubbles as a contrast agent revealed a 33% (P<0.01) decrease in ovarian blood volume already 3 minutes after doxorubicin injection. Doppler ultrasound depicted the same phenomenon in testicular blood volume and blood flow. The femoral arterial blood flow was impaired in the same fashion. Cell-viZio imaging depicted a pattern of vessels'' injury at around the same time after doxorubicin injection: the wall of the blood vessels became irregular and the fluorescence signal displayed in the small vessels was gradually diminished. Paclitaxel had no vascular effect.

Conclusion

We have established a platform of innovative high-resolution molecular imaging, suitable for in vivo imaging of vessels'' characteristics, arterial blood flow and organs blood volume that enable prolonged real-time detection of chemotherapy-induced effects in the same individuals. The acute reduction in gonadal and femoral blood flow and the impairment of the blood vessels wall may represent an acute universal doxorubicin-related vascular toxicity, an initial event in organ injury.  相似文献   

14.
The measurement of blood velocity fields, volume flow, and arterial wall motion in the descending thoracic aorta provides essential hemodynamic information for both research and clinical diagnosis. The close proximity of the esophagus to the aorta in the dog makes it possible to obtain such data nonsurgically using an ultrasonic esophageal probe; however, the accuracy of such a probe is limited if the angle between the sound beam and the flow axis, known as the Doppler angle, is not precisely known. By use of a pulsed Doppler velocity meter (PUDVM) and a triangulation procedure, accurate empirical measurement of the Doppler angle has been obtained, allowing quantification of blood velocity scans across the aorta. Volume flow is obtained by integration of blood velocity profiles and arterial wall motion is measured with an ultrasonic echo tracking device. Accuracy of the probe was substantiated by comparison with ultrasonic and electromagnetic implanted flow cuff measurements. Use of the probe in measurement of blood velocity, volume flow and arterial wall motion at various locations along the 8- and 10-cm length of the descending thoracic aorta in adult beagle dogs is detailed. The simplicity, accuracy, and nontraumatic aspect of the technique should allow increasing use of such a probe in numerous research and clinical applications.  相似文献   

15.
B. Rao  G. David 《Cryobiology》1984,21(5):536-541
Semen was collected in the laboratory from nine healthy donors. The concentrations and the percentages of live and motile spermatozoa in all semen samples were within the normal range. Each sample was diluted with citrate-egg yolk-glycerol medium with and without 5 mM dithiothreitol (DTT). Samples were frozen in liquid nitrogen vapor (?70 °C) for 7 min and subsequently stored in liquid nitrogen. The effect of DTT in cryopreservation of sperm was determined by comparing percentage of motile and live spermatozoa between controls and DTT-treated post-thaw samples. Percentage of motile spermatozoa was determined by two techniques, laser Doppler velocimetry (LDV) and light microscopy. The percentage of live spermatozoa was measured by microscopic evaluation after staining with eosin-nigrosin. It was shown that the addition of DTT to the freezing medium significantly improved the recovery of motile and live spermatozoa in the post-thaw samples. The mean motility recovery, as measured by LDV, was 44.9% in the controls as compared to 73.9% in the DTT-treated samples. Similarly the mean recovery of live spermatozoa in the controls and DTT-treated samples was 66.5 and 86.6%, respectively. Based on these results, a new hypothesis implicating lipid peroxidation in cryoinjury is proposed. It is also suggested that the use of DTT in the freezing medium may offer an advantage over the commonly used techniques of human sperm cryopreservation.  相似文献   

16.
Colour Doppler ultrasound offers the possibility of imaging small vessels not visible by B-mode alone. The colour Doppler image of velocities allows the course of small vessels to be imaged in the X-Y plane of the scan provided the Doppler frequency shift is of sufficient magnitude. This permits alignments of the Doppler cursor, allowing angle correction to provide true velocity measurements from the Doppler shift obtained. Before attempting to make velocity measurements, however, it is essential to be aware of the possible error in the Z plane caused by the thickness of the Doppler sample volume. To quantify this source of error, hydrophone and flow-rig measurements were performed on an Acuson 128 colour Doppler scanner with both 5 MHz linear-array and 3.5 MHz phased-array transducers. Measurements of the transmitted pulses using a point hydrophone showed that both probes employ approximately 3.5 MHz Doppler pulses (in both colour and pulsed Doppler modes). The two transducers have the same axial resolution. In colour Doppler mode the axial length of the sample volume increases automatically with depth by up to 0.5 mm. Measurements of colour and pulsed Doppler signal strength were obtained in a controlled flow rig. Both transducers produced accurate colour flow images of the phantom at their optimum depths; flow velocity errors due to Z-plane thickness are < 5%. There was, however, substantial error outside these optimum conditions (up to 20%).  相似文献   

17.
Thrombosis is a significant issue for cardiovascular device development and use. While thrombosis models are available, very few are device-related and none have been thoroughly validated experimentally. Here, we introduce a surface adherent platelet transport equation into a continuum model to account for the biomaterial interface/blood interaction. Using a rotating disc system and polyurethane-urea material, we characterize steady and pulsatile flow fields using laser Doppler velocimetry. In vitro measurements of platelet adhesion are used in combination with the LDV data to provide further experimental validation. The rotating disc system is computationally studied using the device-induced thrombosis model with the surface platelet adherent transport equation. The results indicate that the flow field is in excellent agreement to the experimental LDV data and that the platelet adhesion simulations are in good agreement with the in vitro platelet data. These results provide good evidence that this transport equation can be used to express the relationship between blood and a biomaterial if the correct platelet adhesion characteristics are known for the biomaterial. Further validation is necessary with other materials.  相似文献   

18.
The cutaneous microcirculation can be divided into thermoregulatory shunt vessels and nutritive skin capillaries. Flux in nonnutritional shunt vessels dominates the signal recorded by the laser Doppler flowmeter. Computerized videophotometric capillaroscopy is a sensitive method for assessing cutaneous nutritive microcirculation. Using patients with blackfoot disease and arteriosclerosis as disease models, we evaluated the sensitivity and clinical usefulness of these relatively new techniques for peripheral vascular disorders. In blackfoot disease, blood flux measured by the laser Doppler flowmeter in the affected toe was lower than that in the nonaffected toe. In symptom-free fingers, blood flow was not significantly different between blackfoot disease and arteriosclerosis. However, blood flow in both diseases was lower than that of the control group. Patients who had the same status of thermoregulatory flow and eyeground arteriosclerotic classification underwent a 1-min arterial occlusion of the digits. The postocclusive reactive hyperemia response (PRH) of nailfold capillary loops was evaluated. All parameters for PRH for the cutaneous nutrient microcirculation including resting capillary blood cell velocity (rCBV), peak capillary blood cell velocity (pCBV) and time to pCBV were more significantly disturbed in the blackfoot disease group than in the arteriosclerotic group. On the basis of the results of this study, dynamic capillaroscopy provides a new approach for the early detection of circulatory disturbances resulting from different mechanisms.  相似文献   

19.
Summary Protoplasmic streaming in the slime moldPhysarum polycephalum has been characterized using laser Doppler spectroscopy. Measurement of the spectrum of scattered laser light permits simultaneous determination of the velocities of all particles in the laser beam, with the relative intensity from each particle proportional to its light scattering cross-section. Simple experimental modifications allow the tracking of the oscillations of the streaming velocities. Rhythmic wall contractions can be monitored simultaneously with the flow velocities. Interpretation of the Doppler spectra shows that a small fraction of the particles in the flowing protoplasm are moving with velocities two to four times greater than the characteristic velocities reported by optical microscopy. Transverse velocities in the tubes are nearly as great as the longitudinal velocities. The shape of the Doppler spectrum at the maximum of the oscillation cycle is consistent with a spatial velocity profile which is sharper than parabolic, presumably because of a viscosity gradient from the center to the walls of the plasmodial tubes. The shape of the Doppler spectrum of depolarized scattered light is of approximately the same form. The response of the plasmodium to increased temperature is an increase in the frequency of the velocity oscillations with little change in the magnitude of the velocities. The response of the plasmodium to very high intensities of laser light is to gel at the point of incidence.  相似文献   

20.
Elevated plasma free fatty acids (FFA) induce skeletal muscle insulin resistance and impair endothelial function. The aim of this study was to characterize the acute hemodynamic effects of FFA in the eye and skin. A triglyceride (Intralipid 20%, 1.5 ml/min)/heparin (bolus: 200 IU; constant infusion rate: 0.2 IU. kg(-1). min(-1)) emulsion or placebo was administered to 10 healthy subjects. Measurements of pulsatile choroidal blood flow with laser interferometry, retinal blood flow with the blue field entoptic technique, peak systolic and end diastolic blood velocity (PSV, EDV) in the ophthalmic artery with Doppler sonography, and subcutaneous blood flow with laser Doppler flowmetry were performed during an euglycemic somatostatin-insulin clamp over 405 min. Plasma FFA/triglyceride elevation induced a rise in pulsatile choroidal blood flow by 25 +/- 3% (P < 0.001) and in retinal blood flow by 60 +/- 23% (P = 0.0125). PSV increased by 27 +/- 8% (P = 0.001), whereas EDV was not affected. Skin blood flow increased by 149 +/- 38% (P = 0.001). Mean blood pressure and pulse rate remained unchanged, whereas pulse pressure amplitude increased by 17 +/- 5% (P = 0.019). Infusion of heparin alone had no hemodynamic effect in the eye or skin. In conclusion, FFA/triglyceride elevation increases subcutaneous and ocular blood flow with a more pronounced effect in the retina than in the choroid, which may play a role for early changes of ocular perfusion in the insulin resistance syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号