首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in fatty acid composition in wheat cultivars of contrasting hardiness.   总被引:17,自引:0,他引:17  
A uniform degree of stimulation in linolenic acid biosynthesis, resulting in a net increase in the unsaturation of membrane lipids, occurs at low temperature in four wheat cultivars of contrasting hardiness. The phenomenon, therefore, is not directly related to the cold hardening process, at least in the range ?5 to ?18 °C, but is merely a general response to the low-temperature growth condition.  相似文献   

2.
Twelve day old winter wheat seedlings (cvs Kharkov, frost hardy and Champlein, less hardy) accumulated linolenic acid at the expense of linoleic acid during controlled hardening. The change was most pronounced in the roots, where it was not specific to the phospholipid fraction. It was less marked in the leaves, but occurred there mainly in the phospholipids. The lack of differences between fatty acid profiles of the two cultivars rules out the explanation of varietal differences in frost hardiness in winter wheat on the basis of major changes in fatty acid unsaturation.  相似文献   

3.
Lipid and fatty acid compositions were determined for chloroplast envelope membranes isolated from spinach (Spinacia oleracea L.), sunflower (Helianthus annuus L.), and maize (Zea mays L.) leaves. The lipid composition was similar in sunflower, spinach, and undifferentiated maize chloroplast envelope membranes and different in maize mesophyll chloroplast envelope membranes. The predominant lipid constituents in all envelope membranes were monogalactosyldiglyceride (27 to 46%), digalactosyldiglyceride (18 to 33%), and phosphatidylcholine (7 to 30%). The fatty acid composition was also similar in sunflower and spinach chloroplast envelope membranes in comparison to those from maize. The major acyl fatty acids of the chloroplast envelope membrane were palmitic (C16:0, 41 and 36%) and linolenic (C18:3, 29 and 40%) acids for spinach and sunflower; palmitic (77%) and stearic (C18:0, 12%) acids for young maize; and palmitic (61%), stearic (14%), and linolenic (13%) acids for mature maize. The differences in lipid and acyl fatty acid compositions among these plants which vary in their rates of net photosynthesis were largely quantitative rather than qualitative.  相似文献   

4.
5.
Isolation and lipid composition of spinach chloroplast envelope membranes   总被引:12,自引:0,他引:12  
The quenching of the Chl a2 fluorescence from spinach chloroplasts and chloroplast fragments by nitroaromatic compounds and the effect of added metal cations on the quenching rate is investigated. The extent of the quenching with nitrobenzene and 1,3-dinitrobenzene was found to be independent of whether Chl a is excited directly, or through Chl b by means of electronic energy transfer. On the basis of this, the contribution from a purely static mechanism is considered as unlikely.Nitroaromatics substituted with ionizable groups are almost equally effective quenchers for the fluorescence of Chl ain vivo and in methanol. On the other hand, nitroaromatics which are slightly soluble, or nearly insoluble, in water quench more strongly the fluorescence of Chl ain vivo. The overriding factor that determines the relation between the apparent and the true quenching constant appears to be the partition of the quencher in the lipid and the aqueous phases of the membrane suspension.Divalent metal cations enhance the quenching by nitrobenzene dramatically, most likely by increasing the hydrophobic character of the chloroplast membranes. This enhancement occurs at cation concentrations higher than those corresponding to the maximal turbidity increase of the membrane suspension; hence, it is attributed to ultrastructural changes of the membrane rather than to volume changes of the thylakoid. These changes may affect the extent of the quenching both by an increase in the local concentration of the nitroaromatic, and by an enhanced rate of excitation exchange among the chlorophylls.  相似文献   

6.
A detailed comparison of the polar-lipid composition of chloroplast thylakoid membranes isolated from triazine-susceptible and triazine-resistant biotypes of Chenopodium album, Senecio vulgaris, Poa annua and Amaranthus retroflexus has been carried out. No major differences in the composition of the bulk lipid matrix were found except for a slightly higher monogalactosyldiacylglycerol to digalactosyldiacylglycerol ratio in resistant compared with susceptible biotypes. There was, however, in the case of resistant plants a higher level of phosphatidylglycerol-containing transhexadecenoic acid in membrane fractions enriched in photosystem two. It is concluded that although the minor differences could contribute to triazine resistance it is more likely that they reflect secondary alterations in membrane organisation associated with changes in relative levels of pigment-protein complexes.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PG phosphatidylglycerol - PSII photosystem two  相似文献   

7.
The effects of dicyclohexylcarbodiimide, a potent inhibitor of chloroplast ATPase, on the light-induced electric potential changes in intact chloroplasts of Peperomia metallica and of a hornwort Anthoceros sp. were investigated by means of glass microcapillary electrodes. The characteristics of potential changes induced by flashes or continuous light in chloroplasts of both species are similar except for the phase of potential rise in continuous light, which is clearly biphasic in Anthoceros chloroplasts. Dicyclohexylcarbodiimide at concentration 5 · 10−5 M completely abolishes the transient potential undershoot in the light-off reaction but has little effect on the peak value of the photoelectric response. The membrane conductance in the light and in the dark was tested by measuring the decay kinetics of flash-generated potential in dark-adapted and preilluminated chloroplasts. In the absence of dicyclohexylcarbodiimide, preillumination causes a significant acceleration of the potential decay. The light-induced changes in the decay kinetics of flash-induced responses were abolished in the presence of dicyclohexylcarbodiimide, whereas the rate of potential decay in dark-adapted chloroplasts was not altered by dicyclohexylcarbodiimide. The results are consistent with the notion that dicyclohexylcarbodiimide diminishes H+ conductance of energized thylakoid membranes by interacting with the H+ channel of ATPase. The occurrence of a lag (approx. 300 ms) on the plot of potential undershoot (diffusion potential) versus illumination time might suggest the increase in H+ permeability coefficient of thylakoid membrane during illumination.  相似文献   

8.
Cadmium (200 ppm) applied through the rooting medium to 30-day-old wheat plants decreased chlorophyll content, net CO2 exchanges and PSII activity by 34, 54 and 43% respectively. Thylakoid total lipids, total glycolipids, total phospholipids and total neutral lipids decreased by 22, 23, 12 and 25%, respectively, under cadmium treatment. Thylakoid membrane glycolipids had three major constituents, viz. monogalactosyl diacylglycerol, digalactosyl diacylglycerol and sulphoquinovosyl diacylglycerol. Monogalactosyl diacylglycerol and digalactosyl diacylglycerol contents decreased by 32 and 27%, respectively, under cadmium. Cadmium application also decreased the concentration of phosphatidyl glycerol and phosphatidyl choline to the extent of about 57 and 31%, respectively. On the other hand, phosphatidic acid and free fatty acids content showed an increase. These compositional changes in thylakoid membranes might be responsible for reduced PSII activity and rate of photosynthesis as observed under cadmium treatment.  相似文献   

9.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were incubated with trypsin or pronase for several hours. The indigestible residue was analyzed by polyacrylamide gel electrophoresis. Trypsinization resulted in a complete digestion of all proteins with the exception of the pigment-protein complexes as well as a polypeptide not yet characterized. Yet, as compared with untreated material, Complex II was found to have higher electrophoretic mobility. Electron-microscopic studies illustrate that the indigestible residue still has a preserved membrane structure. Disintegration of the thylakoid membranes by sodium dodecyl sulfate followed by trypsinization also resulted in the two complexes while all the other proteins were found to be digested. However, after removal of the lipids the protein moieties of the complexes proved to be easily digestible. From these results it is concluded that pigment-protein interaction may be an important factor in maintaining a conformation rather resistant to perturbants and proteases. In contrast to trypsin, pronase completely digested the polypeptides of the thylakoid membranes including the protein moieties of the pigment-protein complexes leaving an amorphous lipid mass. The results support the assumption that the complexes are necessary to maintain the membrane structure.  相似文献   

10.
Bean thylakoid membranes treated with various lipolytic enzymes (bean galactolipase, phospholipases A2, C, D) showed marked changes in their acyl lipid composition. As a consequence of acyl lipids hydrolysis, destruction of some chlorophyll a-protein complexes (CP1a, CP1, CPa) or monomerization of the oligomeric of light harvesting chlorophyll a/b protein complex (LHCP) was observed. It is concluded that galactolipids and phosphatidylcholine are responsible for the stability of CP1a, CP1 and CPa, respectively. Phosphatidylglycerol and to some extent monogalactosyldiacylglycerol are essential for the stabilization of oligomeric structures of light harvesting chlorophyll a/b protein complex.Abbreviations chl chlorophyll - CP1a, CP1 chl a-protein complexes, of PSI - CPa chl a-protein complex of PSII - DGDG diagalactosyldiacylglycerol - FC free chl - GL galactolipase - LHCP1–3 light harvesting chl a/b protein complex - MGDG monogalactosyldiacylglycerol - PAGE polyacrylamide gel electrophoresis - PC phosphatidylcholine - PG phosphatidylglycerol - PLA2 phospholipase A2 - PL phospholipase C - PLD phospholipase D - PSI photosystem I - PSII photosystem II - SDS sodium dodecyl sulphate - SQDG sulfoquinovosyl-diacylglycerol - TCA trichloroacetic acid - Tricine N-tris-(hydroxymethyl)-methylglycine - Tris Tris-(hydroxymethyl)-aminomethan  相似文献   

11.
The effects of lead and sodium acetate treatment on the lipid composition of leaves, thylakoid membranes and cell debris of spinach were investigated. The concentration of lead in leaves and cell debris was higher than that in thylakoid membranes, probably due to a protection of photosynthetic apparatus. The lead treatment lead to decrease of contents of monogalactosyl diacylglycerols and phospholipids and to increase of the other glycolipids in the thylakoid membranes. There were no statistically significant differences between the total lipids of thylakoid membranes after incubation with lead and sodium acetate, which was an indication that in this case the effect of metal ion was not specific.  相似文献   

12.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibition. Heparin also interfered with NADPH oxidation by membrane-bound ferredoxin-NADP reductase (with dichlorophenol-indophenol as the acceptor) by a mechanism that involves partial competitive inhibition. This reaction was sensitive to the presence of salts; increasing ionic strength increases the heparin Ki for inhibition of NADPH oxidation. These results show that heparin binds to ferredoxin-NADP reductase, and in doing so interferes with binding to the reductase by both ferredoxin and NADP(H). Since heparin is redox inactive and does not interfere with the photophosphorylation reaction, it is a useful inhibitor of thylakoid membrane reactions which require the catalytic activity of ferredoxin-NADP reductase.  相似文献   

13.
Oligomycin inhibited the membrane-bound, Ca2+-dependent ATPase of pea (Pisum sativum var. Progress No. 9) chloroplasts up to 50%, but only after treating the membranes with trypsin, whether or not the trypsin step was needed for full activity. The energy-linked Mg2+-dependent (light- and dithiothreitol (DTT)-activated) ATPase of pea thylakoids could be inhibited up to 100% under specified conditions. The data indicate that oligomycin does not interfere with activation processes, and it failed to inhibit the ATPase of solubilized chloroplast coupling factor 1 under any circumstances. Photophosphorylation, previously thought insensitive to oligomycin, was inhibited 30% in the case of pea chloroplasts, and this increased to 50% inhibition after pretreating the chloroplasts with either trypsin or DTT. The nature of inhibition of phosphorylation was complex, with apparent small components of electron transport inhibition and uncoupling, as well as energy transfer inhibition.  相似文献   

14.
Abstract Thylakoids isolated from cold-acclimated spinach (Spinacia oleracea L.) leaves were more resistant against mechanical freeze-thaw injury measured as plastocyanin release, than thylakoids from non-acclimated leaves. They were more resistant against solute influx during freezing and they were able to re-expand to a larger volume in comparison to non-hardy controls. Likewise, plastocyanin was released from thylakoids of non-acclimated but not of frost-hardy leaves under conditions of mild in situ freezing stress for several days.  相似文献   

15.
Chloroplasts isolated from broad bean (Vicia faba) show major structural reorganisations on heating to temperatures above 35°C. Exposure to increasing temperatures in the range 35–45°;C for 5 min, leads to a progressive destacking of the chloroplast membranes and the replacement of the normal granal arrangement by modified thylakoid attachment sites. An analysis of the size and packing densities of the freeze-fracture particles present in different membrane fracture-faces suggests that this rearrangement reflects the dissociation of the light-harvesting units of Photosystem II. The antennae complexes of Photosystem II appear to cluster together, maintaining regions of membrane adhesion, whilst excluding the core-complexes of Photosystem II and light-harvesting units of Photosystem I from these regions. If the chloroplasts are heated to higher temperatures, 45–55°C, phase-separated aggregates of non-bilayer-forming lipids are often observed. The release of these lipids from their normal constraints within the bilayer is consistent with the idea that they play a role in the packaging of the light-harvesting complexes within the thylakoid membrane.  相似文献   

16.
17.
18.
Changes in fatty acid composition of chloroplast membrane lipids were investigated using tobacco (Nicotiana tabacum L., cv. Samsun) plants subjected to cold hardening for 6 days at 8°C. Under optimal growing temperature (22°C), the lipids of thylakoid membranes were characterized by elevated content of 16:3n-3 and 18:3n-3 fatty acids (FA). Compared to the lipids of chloroplast envelope membranes, the thylakoid lipids were less rich in the content of saturated, mono- and diunsaturated FA. The relative content of unsaturated FA in chloroplast membranes increased substantially during cold hardening, which was mainly due to the accumulation of 18:3n-3 FA. It is concluded that the observed changes in FA composition of chloroplast lipids during cold hardening adjust the fluidity of these membranes to the level sufficient for functioning of tobacco photosynthetic apparatus, which is a prerequisite for accumulation of assimilates and allows the hardened tobacco plants to survive under conditions of hypothermia.  相似文献   

19.
The polypeptide composition and spectral properties of isolated light-harvesting chlorophyll ab-protein complexes from intact and trypsin-treated thylakoid membranes of Hordeum vulgare and Vicia faba are compared. The LHCP complexes consist of four distinct polypeptides with molecular weights between 21 000 and 25 000 occurring in equal relative amounts in the whole polypeptide spectra of thylakoid membranes. It is shown indirectly that the two major polypeptides very probably belong to different chlorophyll-proteins. The loss of a small segment from both polypeptides during trypsin digestion of thylakoids does not substantially alter the spectral properties and cation-mediated aggregation of isolated LHCP complexes.  相似文献   

20.
The data on inheritance of frost resistance and winter hardiness of bread wheat lines obtained as a result of distant hybridization of wheat-rye and wheat-elymus amphiploids with durum and bread wheat were presented. It was shown that selection of the donors of valuable traits is sensible to make in later progenies of hybrids (F6-F7). So, it is possible to obtain the new initial breeding material for winter bread wheat selection with high frost tolerance, winter hardiness and early maturity. Hypotheses explaining the high frost resistance of hybrids are presented. The crosses of the octoploid amphiploids with durum wheat are more preferable for the alien traits introgression into wheat than the crosses with bread wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号