首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细胞程序性死亡因子(programmed cell death,PDCD)是一类与肿瘤发展相关并在进化上高度保守的蛋白质。PDCD家族由多个成员构成。其中,研究较为深入的包括PDCD1、PDCD2、PDCD4、PDCD5、PDCD6、PDCD7、PDCD8及PDCD10。PDCD在人类的各组织及细胞中广泛分布,其主要功能是对细胞凋亡的调控。目前研究发现,PDCD家族成员可通过不同信号通路实现对肿瘤细胞活力的调控,且某些家族成员的缺失或过表达都会引起机体发生病变,证明其在多种疾病当中具有重要作用。本文汇总了PDCD1、PDCD2、PDCD4、PDCD5、PDCD6、PDCD7、PDCD8、PDCD9、PDCD10、PDCD11、PDCD12的基因结构与蛋白质结构,介绍了各家族成员在细胞程序性死亡过程中的关系,并总结目前所报道的PDCD家族成员在肿瘤,以及多种疾病中所发挥的调控作用,以期帮助科研工作者了解其在细胞凋亡中的作用,以及为肿瘤和相关疾病发生发展的分子机制提供参考。  相似文献   

2.
3.
Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis?   总被引:32,自引:0,他引:32  
Y Chen  R Sun  W Han  Y Zhang  Q Song  C Di  D Ma 《FEBS letters》2001,509(2):191-196
The programmed cell death 5 (PDCD5) protein is a novel protein related to regulation of cell apoptosis. In this report, we demonstrate that the level of PDCD5 protein expressed in cells undergoing apoptosis is significantly increased compared with normal cells, then the protein translocates rapidly from the cytoplasm to the nucleus of cells. The appearance of PDCD5 in the nuclei of apoptotic cells precedes the externalization of phosphatidylserine and fragmentation of chromosome DNA. This phenomenon is parallel to the loss of mitochondrial membrane potential, independent of the feature of apoptosis-inducing stimuli and also independent of the cell types and the apoptosis modality. In conclusion, the nuclear translocation of PDCD5 is a universal earlier event of the apoptotic process, and may be a novel early marker for apoptosis.  相似文献   

4.
5.
Cellular uptake of exogenous human PDCD5 protein   总被引:4,自引:0,他引:4  
PDCD5 (human programmed cell death 5) plays a significant role in apoptotic and paraptotic cell deaths. However, it was found that recombinant PDCD5 added exogenously to culture medium could also enhance programmed cell death triggered by certain stimuli. Here we show that PDCD5 has a remarkable role in intercellular transport in various cells (endogenous caveolin-1-positive and -negative cells) through a clathrin-independent endocytic pathway that originates from heparan sulfate proteoglycan binding and lipid rafts. These conclusions are supported by the studies of slow internalization kinetics of PDCD5 endosomes, by the resistance of endosomes to nonionic detergents, by the overexpression of the clathrin dominant negative mutant form, which did not block PDCD5-fluorescein isothiocyanate uptake, and by PDCD5 localization in lipid rafts by immunofluorescence, electron microscopy techniques, and sucrose density centrifugation. This is further supported by the findings that certain drugs that disrupt lipid rafts, compete with cell membrane heparan sulfate proteoglycans, or block the caveolae pathway, impair the PDCD5 internalization process. The translocation activity of PDCD5 may possess physiological significance and be a potential mechanism for its programmed cell death-promoting activity. PDCD5 protein also has the ability to drive the internalization of large protein cargo, depending on the residues 109-115 mapped by deletion mutagenesis, and can introduce the Mdm-2 binding domain of human p53 into living cells to induce cell death in human cancer cells, indicating that PDCD5 may serve as a vehicle and thus have potential in the field of protein delivery to the cells. This is the first evidence of such findings.  相似文献   

6.
果蝇程序化死亡基因5(PDCD5)同源cDNA的克隆和序列分析   总被引:2,自引:0,他引:2  
 为了解人类白血病细胞凋亡相关新基因 TFAR1 9(PDCD5,programmed cell death5)在不同种属间的序列同源性 ,利用 EST(expression sequence tag)拼接、RT- PCR、DNA序列测定技术及计算机分析技术 ,首次成功地进行了果蝇 PDCD5同源 c DNA编码区基因克隆和序列分析 .发现果蝇与小鼠及果蝇与人 PDCD5在核苷酸水平上分别有 57.5%和 57.1 %的同源性 ,在氨基酸水平上分别有 46.8%和 46.4%的同源性 .功能区分析发现 ,果蝇 PDCD5c DNA编码 1 33个氨基酸 ,计算机预测可能是一种核蛋白 ,含 5个可能的酪蛋白激酶 (casein kinase )磷酸化位点 ,2个可能的 PKC磷酸化位点 ,与人 PDCD5的功能区类似 .因而果蝇 PDCD5是与人 PDCD5同源的新基因 ,可能都与细胞程序化死亡相关 .  相似文献   

7.
Lee JH  Rho SB  Chun T 《Biotechnology letters》2005,27(14):1011-1015
Programmed cell death 6 (PDCD6) protein is a 22 kDa EF-hand type Ca2+-binding protein involved in apoptosis. To define the regulating mechanism of PDCD6 activity in the apoptotic pathway, we searched a human ovary cDNA library for a novel PDCD6 binding protein using a yeast two-hybrid system. The selected protein was the human death-associated protein kinase 1 (DAPk1), another protein that functions as a positive mediator of apoptosis. Co-transfection of PDCD6 and DAPk1 cDNA into a tumor cell line accelerated apoptosis via caspase-3 dependent pathway.J.H. Lee and S.B. Rho contributed equally to this workRevisions requested 4 March 2005; Revisions received 10 May 2005  相似文献   

8.
The protein of programmed cell death 5 (PDCD5) is believed to participate in regulation of apoptosis. Although PDCD5 is reducibly expressed in various human tumors, it is not clear which expression level of PDCD5 is in gastric cancer (GC). In this study, we have systematically employed the approaches of RT-PCR, Real- time PCR, Immunohistochemistry (IHC), Immunofluorescence staining (IFS) and Western blot to determine the PDCD5 expression in GC cells and primary tumors, at mRNA and protein level, respectively. Our data revealed that the positive rate of PDCD5 expression in the gastric tumor tissues was significantly less than that of the normal tissues (14 out of 102 vs 36 out of 51), whereas, the decreased expression of PDCD5 protein was well correlated with the up-regulated expression of Bcl-2 in these tissues, and the up-regulated expression and nuclear translocation of PDCD5 protein were verified in the apoptotic GC cells induced by Diallyl trisulfide (DATS). Furthermore, the survival curve has suggested that the more PDCD5 expressions were found in the patients, the longer the survival periods were. Therefore, our observations lay down a reasonable postulation that PDCD5 may play a key role to regulate the apoptotic processes in the GC cells and gastric tumors.  相似文献   

9.
10.
Apoptosis is reduced in the synovial tissue of patients with rheumatoid arthritis (RA), possibly due to decreased expression of pro-apoptotic genes. Programmed Cell Death 5 (PDCD5) has been recently identified as a protein that mediates apoptosis. Although PDCD5 is down-regulated in many human tumors, the role of PDCD5 in RA has not been investigated. Here we report that reduced levels of PDCD5 mRNA and protein are detected in RA synovial tissue (ST) and fibroblast-like synoviocytes (FLS) than in tissue and cells from patients with osteoarthritis (OA). We also report differences in the PDCD5 expression pattern in tissues from patients with these two types of arthritis. PDCD5 showed a scattered pattern in rheumatoid synovium compared with OA, in which the protein labeling was stronger in the synovial lining layer than in the sublining. We also observed increased expression and nuclear translocation of PDCD5 in RA patient-derived FLS undergoing apoptosis. Finally, overexpression of PDCD5 led to enhanced apoptosis and activation of caspase-3 in triptolide-treated FLS. We propose that PDCD5 may be involved in the pathogenesis of RA. These data also suggest that PDCD5 may serve as a therapeutic target to enhance sensitivity to antirheumatic drug-induced apoptosis in RA.  相似文献   

11.
PDCD2 is an evolutionarily conserved protein with previously characterized homologs in Drosophila (zfrp8) and budding yeast (Tsr4). Although mammalian PDCD2 is essential for cell proliferation and embryonic development, the function of PDCD2 that underlies its fundamental cellular role has remained unclear. Here, we used quantitative proteomics approaches to define the protein-protein interaction network of human PDCD2. Our data revealed that PDCD2 specifically interacts with the 40S ribosomal protein uS5 (RPS2) and that the PDCD2-uS5 complex is assembled co-translationally. Loss of PDCD2 expression leads to defects in the synthesis of the small ribosomal subunit that phenocopy a uS5 deficiency. Notably, we show that PDCD2 is important for the accumulation of soluble uS5 protein as well as its incorporation into 40S ribosomal subunit. Our findings support that the essential molecular function of PDCD2 is to act as a dedicated ribosomal protein chaperone that recognizes uS5 co-translationally in the cytoplasm and accompanies uS5 to ribosome assembly sites in the nucleus. As most dedicated ribosomal protein chaperones have been identified in yeast, our study reveals that similar mechanisms exist in human cells to assist ribosomal proteins coordinate their folding, nuclear import and assembly in pre-ribosomal particles.  相似文献   

12.
Optimal skeletal muscle mass is vital to human health, because defects in muscle protein metabolism underlie or exacerbate human diseases. The mammalian target of rapamycin complex 1 is critical in the regulation of mRNA translation and protein synthesis. These functions are mediated in part by the ribosomal protein S6 kinase 1 (S6K1) through mechanisms that are poorly understood. The tumor suppressor programmed cell death 4 (PDCD4) has been identified as a novel substrate of S6K1. Here, we examined 1) the expression of PDCD4 in skeletal muscle and 2) its regulation by feed deprivation (FD) and refeeding. Male rats (~100 g; n = 6) were subjected to FD for 48 h; some rats were refed for 2 h. FD suppressed muscle fractional rates of protein synthesis and Ser(67) phosphorylation of PDCD4 (-50%) but increased PDCD4 abundance (P < 0.05); refeeding reversed these changes (P < 0.05). Consistent with these effects being regulated by S6K1, activation of this kinase was suppressed by FD (-91%, P < 0.05) but was increased by refeeding. Gavaging rats subjected to FD with a mixture of amino acids partially restored muscle fractional rates of protein synthesis and reduced PDCD4 abundance relative to FD. Finally, when myoblasts were grown in amino acid- and serum-free medium, phenylalanine incorporation into proteins in cells depleted of PDCD4 more than doubled the values in cells with a normal level of PDCD4 (P < 0.0001). Thus feeding stimulates fractional protein synthesis in skeletal muscle in parallel with the reduction of the abundance of this mRNA translation inhibitor.  相似文献   

13.
Programmed cell death 6 (PDCD6) was originally found as a pro-apoptotic protein, but its molecular mechanism is not well understood. In this study, we have attempted to investigate the effects of PDCD6 on the inhibition of angiogenesis-mediated cell growth as a novel anti-angiogenic protein. Purified recombinant human PDCD6 inhibited cell migration in a concentration-time-dependent manner. We also found that overexpressed PDCD6 suppressed vascular endothelial growth factor (VEGF)-induced proliferation, invasion, and capillary-like structure tube formation in vitro. PDCD6 suppressed phosphorylation of signaling regulators downstream from PI3K, including Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β(GSK-3β), ribosomal protein S6 kinase (p70S6K), and also decreased cyclin D1 expression. We found binding PDCD6 to VEGFR-2, a key player in the PI3K/mTOR/P70S6K signaling pathway. Taken together, these data suggest that PDCD6 plays a significant role in modulating cellular angiogenesis.  相似文献   

14.
15.
Up-regulation of PDCD4 in senescent human diploid fibroblasts   总被引:3,自引:0,他引:3  
Programmed cell death 4 (PDCD4) has a common MI domain sharing with death associated protein 5 (DAP5) and a component of eukaryotic translation initiation factor (eIF4G) complex and it might also work as a tumor suppressor. We could find that the message and product of Pdcd4 gene were up-regulated in senescent human diploid fibroblasts. In yeast two hybrid analysis, the C-terminal region of PDCD4 interacted with ribosomal protein S13 (RPS13), ribosomal protein L5 (RPL5), and TI-227H. In in vitro binding assay, RPS13, a component of 40S ribosome was stably bound to PDCD4. We also found that PDCD4 was localized to polysome fractions. We could pull out eIF4G with GST-PDCD4, but eIF4E did not interact with PDCD4. From these results, we could assume that PDCD4 might regulate the eIF4G-dependent translation through direct interactions with eIF4G and RPS13 in senescent fibroblasts.  相似文献   

16.
程序性细胞死亡分子5(PDCD5)研究进展   总被引:1,自引:0,他引:1  
程序性细胞死亡分子5(programmed cell death 5,PDCD5)在人体各种组织中广泛存在,可以通过多种凋亡通路促进细胞凋亡,其在大部分肿瘤中低表达,对肿瘤化疗具有增敏效应.近年发现,除了在细胞凋亡过程中发挥作用外,PDCD5在多种疾病的病理进程中发挥重要作用,如:肿瘤、自身免疫性疾病、炎症性疾病、脑缺...  相似文献   

17.
Chemoresistance is a challenge for clinician in management of tongue cancer. Therefore, it is necessary to explore alternative therapeutic methods to overcome drug resistance. miRNAs are endogenous ?22nt RNAs that play important regulatory roles by targeting mRNAs. miR-21, an essential oncogenic molecule, is associated with chemosensitivity of several human cancer cells to anticancer agents. In this study, we investigated the effects and molecular mechanisms of miR-21 in chemosensitivity of tongue squamous cell carcinoma cells (TSCC) to cisplatin. miR-21 expression was detected in tongue cancer tissue using RT-PCR and PDCD4 protein expression was measured using immunohistochemistry. miR-21 and(or) PDCD4 depleted cell lines were generated using miR-21 inhibitor and(or) siRNA. The viabilities of treated cells were analyzed using MTT assay. RT-PCR was used to detect miR-21 expression and immunoblotting was used to detect protein levels. Cell cycle and apoptosis were analyzed using propidium iodide (PI) staining and Annexin V/PI staining, respectively. The expression of miR-21 in tumorous tissue was significantly higher compared with adjacent normal tissue and loss of PDCD4 expression was observed in TSCCs. Transfection of miR-21 inhibitor induced sensitivity of TSCC cells (Tca8113 and CAL-27) to cisplatin. TSCC cells transfected with PDCD4 siRNA became more resistant to cisplatin therapy. We found an increase PDCD4 protein level following the transfection of miR-21 inhibitor using Western blot analysis. In addition, the enhanced growth-inhibitory effect by miR-21 inhibitor was weakened after the addition of PDCD4 siRNA. Suppression of miR-21 or PDCD4 could significantly promote or reduce cisplatin-induced apoptosis, respectively. Our data suggest that miR-21 could modulate chemosensitivity of TSCC cells to cisplatin by targeting PDCD4, and miR-21 may serve as a potential target for TSCC therapy.  相似文献   

18.
Programmed cell death-4 (PDCD4) is a recently discovered tumor suppressor protein that inhibits protein synthesis by suppression of translation initiation. We investigated the role and the regulation of PDCD4 in the terminal differentiation of acute myeloid leukemia (AML) cells. Expression of PDCD4 was markedly up-regulated during all-trans retinoic acid (ATRA)-induced granulocytic differentiation in NB4 and HL60 AML cell lines and in primary human promyelocytic leukemia (AML-M3) and CD34(+) hematopoietic progenitor cells but not in differentiation-resistant NB4.R1 and HL60R cells. Induction of PDCD4 expression was associated with nuclear translocation of PDCD4 in NB4 cells undergoing granulocytic differentiation but not in NB4.R1 cells. Other granulocytic differentiation inducers such as DMSO and arsenic trioxide also induced PDCD4 expression in NB4 cells. In contrast, PDCD4 was not up-regulated during monocytic/macrophagic differentiation induced by 1,25-dihydroxyvitamin D3 or 12-O-tetradecanoyl-phorbol-13-acetate in NB4 cells or by ATRA in THP1 myelomonoblastic cells. Knockdown of PDCD4 by RNA interference (siRNA) inhibited ATRA-induced granulocytic differentiation and reduced expression of key proteins known to be regulated by ATRA, including p27(Kip1) and DAP5/p97, and induced c-myc and Wilms' tumor 1, but did not alter expression of c-jun, p21(Waf1/Cip1), and tissue transglutaminase (TG2). Phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway was found to regulate PDCD4 expression because inhibition of PI3K by LY294002 and wortmannin or of mTOR by rapamycin induced PDCD4 protein and mRNA expression. In conclusion, our data suggest that PDCD4 expression contributes to ATRA-induced granulocytic but not monocytic/macrophagic differentiation. The PI3K/Akt/mTOR pathway constitutively represses PDCD4 expression in AML, and ATRA induces PDCD4 through inhibition of this pathway.  相似文献   

19.
Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3 Å resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.  相似文献   

20.
An L  Zhao X  Wu J  Jia J  Zou Y  Guo X  He L  Zhu H 《PloS one》2012,7(1):e30097
Programmed cell death 5 (PDCD5) is a cytosolic protein suppressing growth of multiple types of cancer cells through activating p53. We hypothesized that PDCD5 plays an essential role in cardiac remodeling and function. PDCD5 was significantly up-regulated in the hearts from mice subjected to angiotensin II treatment or transverse aortic constriction. Thus, we generated transgenic mice over-expressing human PDCD5 under the control of alpha myosin heavy chain promoter to examine the role of PDCD5 in cardiac remodeling. Transgenic founder died spontaneously displayed enlarged heart. The high PDCD5 over-expressing line (10-fold) showed reduced survival rate, increase in heart weight normalized to body weight. Real-Time RT-PCR analysis revealed fetal gene program was up-regulated. Echocardiography and histopathological examination showed characteristics of dilated cardiomyopathy and heart failure in transgenic mice. Western blot and immunohistochemistry analysis showed autophagy was dramatically increased in transgenic mice as compared to WT littermates control mice, while apoptosis remained unchanged. The enhanced autophagy in high over-expressing line was associated with significant increase in p53 activity and its downstream target damage-regulated autophagy modulator expression. The low over-expressing line (3.5-fold) appeared normal, but was more susceptible to angiotensin II-induced cardiac hypertrophy. This study is the first providing evidence that PDCD5 plays an important role in cardiac remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号