首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first multi-tissue bank was founded at Havana in 1958. At that time, freeze-drying was used at the bank as a method of preserving, as well as Cobalt 60 irradiation to sterilise bone tissue, heart valves and others. The impact of the IAEA program in tissue banking activities in Cuba can be summarised as follows: (a) Increase in the production of sterilised tissues using ionising radiation (bone, pig skin and amnion) for medical treatment in the tissue bank of the Hospital Frank Pais; (b) increase of the quality of the productions of bone tissues, pig skin and amnion; (c) reduction in the import of tissues by increasing the local production of tissues; (d) sustainability in the number of donors through the implementation of a public and professional awareness campaign; (e) training of six persons in the Regional Training Centre of Buenos Aires; (f) qualification of one person in the administration of a tissue bank and in the implementation of a Quality System. The amount of tissues produced and sterilised using the ionising radiation techniques in the established banks was 25,510 units. The amount of patients treated with sterilised tissues produced by the established banks was 2,448.  相似文献   

2.
We initiated this study to evaluate the suitability for therapeutic use in transplantation of tissues obtained from human abortuses. We have developed protocols for the collection, handling and preservation of hepatic stem cells from electively aborted embryos and have developed methods for assessment of the cells so derived and processed. In this paper we present our findings regarding screening of potential donors, acquisition of fetal tissues, and assessment of the tissues for potentially infectious contaminants. We assess the suitability of the tissue donors according to current standards used for donors of commonly transplanted tissues (e.g., bone grafts, skin grafts and heart valves) and present data regarding the real availability of tissues from elective abortion procedures that would meet those standard tissue banking criteria.We specifically evaluated the donor's willingness to provide a blood sample for testing, conducted a detailed interview similar to those used for typical organ and tissue donors, and assessed the type and incidence of contamination in collected tissues. We find that although many women are willing to consent to use of the tissues for transplantation, attrition from the study for various reasons results in few fetal organs ultimately realistically available for transplantation. Typical reasons for attrition include: unwillingness to have a blood sample drawn or tested, positive serology results, social/medical high risk factors for acquisition of transmissible disease, no identifiable organs available, and unacceptable microbial contamination. Thus, although it might seem that due to the numbers of abortions performed annually, that there would be substantial numbers of suitable tissues available, only a small proportion are truly suitable for transplantation.  相似文献   

3.
The tissue bank “Rosa Guerzoni Chambergo” (RGCTB) located at the Child’s Health Institute was inaugurated in 1996, with the financial and technical support of the IAEA program on radiation and tissue banking. Since 1998, the biological bandage of fresh and lyophilised pigskin, amnion and bone tissue is processed routinely in this bank. In all cases, the tissue is sterilised with the use of Cobalt-60 radiation, process carried out at the Laboratories of Irradiation of the Peruvian Institute of Nuclear Energy (IPEN). The tissue bank in the Child’s Health Institute helped to save lives in an accident occurred in Lima, when a New Year’s fireworks celebration ran out of control in January 2002. Nearly 300 people died in the tragic blaze and hundreds more were seriously burned and injured. Eight Lima hospitals and clinics suddenly were faced with saving the lives of severely burned men, women and children. Fortunately, authorities were ready to respond to the emergency. More than 1,600 dressings were sterilised and supplied to Lima surgeons. The efforts helped save the lives of patients who otherwise might not have survived the Lima fire. Between 1998 and September 2007, 35,012 tissue grafts were produced and irradiated. Radiation sterilised tissues are used by 20 national medical institutions as well as 17 private health institutions. The tissue bank established in Peru with the support of the IAEA is now producing the following tissues: pigskin dressings, fresh and freeze-dried; bone allografts, chips, wedges and powdered, and amnion dressings air-dried. It is also now leading the elaboration of national standards, assignment being entrusted by ONDT (Organización Nacional de Donación y Transplantes; National Organisation on Donation and Transplant). This among other will permit the accreditation of the tissue bank. In this task is also participating IPEN.  相似文献   

4.
In 1971, first bone bank was established at the Department of Orthopaedic Surgery in Catholic University of Korea. The first clinical case was reported at the Journal of Korean Orthopaedic Association in 1973. Subsequently, more than 60 surgical bone banks were established in the university and teaching hospitals throughout country. In 1990, the Korea Biomaterial Research Institute (KBRI) organised the IAEA/RCA training course on tissue banking. In this course students from 17 countries participated. In 1994 the first collaboration for cadaver tissue recovery was performed. It is important to single out that the various religious groups in Korea have favourable attitudes towards tissue donation, which contributes to the success of the tissue banking programs in the country. The demands of allograft were getting increased in the Korean medical and dental society. Currently, 62 hospital based bone banks, 5 processing tissue banks, 1 regional tissue bank and more than 30 tissue distributors are working in Korea. Based on the U.S.A. usage of more than 1,000,000 grafts per year, 100,000–200,000 grafts will be needed in Korea. Those findings indicate a greatly increased need for training of tissue bank operators. The Korean society will need at least 20–30 tissue bank operators for training in every year. The National Training Centre (NTC) for tissue bank operators and medical personal using the IAEA Curriculum in the Korean languages was established in 2003. From 2004 to 2006, NTC have been trained 40 tissue bank operators. They have produced at least 10,000 tissues per year. These figures indicate a cost saving of US$ 10 million. Within 5 years, NTC will train 100 tissue bank operators. These individuals and their respective banks will provide an increasing number of high quality grafts to the communities they serve at a cost far less than if they were acquired from abroad.  相似文献   

5.
Introduction: Here, we describe our Tissue Banking experiences of 4 years of activity in Mexico. Methods: Data of allografts provided by our Bank and bone retrievals performed by our teams between February of 2001 and August of 2004 were included. Results: There were 100 bone donors, a total of 1107 tissues were obtained with an average of 11 tissues by retrieval, samples from all tissues were obtained during retrieval and cultured for bacterial contamination, 250 tissues were positives to bacterial growth with an average of 22.58% of bacterial contamination of tissue by retrieval. A total of 4493 allografts were provided and were utilized in 3643 patients. The allografts were used mainly by orthopedic surgeons (62%) and dentists (30%). The most used allografts were morcellized cancellous bone 31%, pulverized 25% and chips of cancellous bone 20%. Among orthopedic patients the most frequent procedures were related with spine degenerative diseases 39.09%, followed by non-pathological fractures and its complications 28.67% and bone tumors and cystic bone lesions 11.59%. Conclusions: Sustained increase of allograft utilization in Mexico reflects a great necessity for them in our country. The increase in public awareness about tissue donation has allowed an increase in tissue donations and retrievals.  相似文献   

6.
Since 1993, the IAEA supported the establishment or the consolidation of seven tissue banks in the region. As a direct or indirect consequence of the implementation of the IAEA program, more than 53 tissue banks are now operating in the participating countries. The fast development of tissue banks in the Latin America region under the ARCAL Agreement and with the financial and technical support of the IAEA program made it necessary to train new tissue bank operators and medical personnel. In general, 90 tissue bank operators and medical personnel were trained in the training centre of Buenos Aires. Another six tissue bank operators and medical personnel were trained in the International Training Centre of Singapore. The main impact of the IAEA program in the region was the following: the establishment or consolidation of fifty-three tissue banks in nine countries in the region; the implementation of five national projects, allocating $1,006,737 dollars for this purpose and of one regional project allocating $284,741 dollars for this purpose; the use of the IAEA Standards, the IAEA Code of Practice and the IAEA Public Awareness Strategies in several tissue banks in the region; the application of quality control and quality assurances manuals in all of the participating countries.  相似文献   

7.
The National University Hospital (NUH) Tissue Bank was established in October 1988. The National University of Singapore (NUS) was officially appointed by IAEA to be the IAEA/NUS Regional Training Centre (RTC) for RCA Member States for training of tissue bank operators on September 18, 1996. In the first five years since its establishment the National University Hospital Tissue Bank concentrated its work on the sterile procurement and production of deep frozen femoral heads and were used in patients for bone reconstruction. The cost of producing these tissues were about SGD$ 250 per femoral head although cost fees were initially charged at SGD$ 50 per femoral head. The most important activity carried out by Singapore within the IAEA was training. Between November 1997 and April 2007, a total of nine courses were conducted by RTC with a total of 180 tissue bank operators registered, 133 from Asia and the Pacific region (13 countries, including 2 from Iran), 14 from Africa (Zambia, Libya, Egypt, Algeria, and South Africa), 6 from Latin America (Brazil, Chile, Cuba, Peru, and Uruguay), 9 from Europe (Greece, Slovakia, Poland, and Ukraine), and 2 from Australia. The last batch (ninth batch) involved 20 students registered in April 2007 and will be due to sit for the terminal examination in April 2008.  相似文献   

8.
Allogenic aortic valves are widely used in case of native aortic valve or root disease as well as failed prosthetic valves with great success. At the Department of Cardiovascular Surgery and Transplantology of the Jagiellonian University in Cracow, aortic valve or aortic root replacement with allogenic aortic valve has been performed for 23 years. Allogenic heart valve bank was founded in 1980. In the bank we prepare both aortic allografts for adult cardiac surgical procedures and pulmonary allografts that are mostly used for repair of congenital heart disease.Allogenic aortic valves implantation was usually considered in our clinic for older patients, patients with infective endocarditis of the native or prosthetic valve, young women in reproductive age and patients with Marfan syndrome. Allografts exhibit excellent clinical performance and acceptable durability with no early failure if properly inserted. Between 1980 and 1992, allografts were obtained only from cadavers during routine autopsies. More than 10% of prepared allografts were exported to other cardiac surgery centres in Poland and foreign countries.Aortic valve replacement using allogenic aortic valves can be performed with acceptable mortality and good long-term results. The procedure although surgically more challenging has the advantage of not requiring anticoagulation therapy, hemodynamic performance of the allogenic valve is excellent, it demonstrates freedom from thromboembolism and infective endocarditis. We would like to emphasize the importance and advantages of the fact that allogenic heart valve bank is placed in the department of cardiovascular surgery and it is able to supply the department in heart valve allografts 24 h a day.  相似文献   

9.
The IAEA was instrumental in developing the first Malaysian tissue bank at University Hospital of Universiti Sains Malaysia (HUSM), Kubang Kerian, Kelantan in early 1990s and it was officiated as National Tissue Bank in 1994. Up to date, 38 government and private hospitals have received a supply from the bank. Bone allografts in term of bone chips, morsalised bone and long bones are procured from Malaysian donors. Almost thirty students from Malaysia graduated in the training courses carried out in Singapore since 1998 at regional and interregional levels. Organ donation is more readily accepted by the public at the moments, perhaps due to the vast promotion and advertisement given by the local newspapers and other media, but gradually tissue donation is catching up as well.  相似文献   

10.
Tissue banking activities in Argentina started in 1993. The regulatory and controlling national authority on organ, tissue and cells for transplantation activity is the National Unique Coordinating Central Institute for Ablation and Implant (INCUCAI). Three tissue banks were established under the IAEA program and nine other banks participated actively in the implementation of this program. As result of the implementation of the IAEA program in Argentina and the work done by the established tissue banks, more and more hospitals are now using, in a routine manner, radiation sterilised tissues processed by these banks. During the period 1992–2005, more than 21 016 tissues were produced and irradiated in the tissue banks participating in the IAEA program. Within the framework of the training component of the IAEA program, Argentina has been selected to host the Regional Training Centre for Latin American. In this centre, tissue bank operators and medical personal from Latin American countries were trained. Since 1999, Argentina has organised four regular regional training courses and two virtual regional training courses. More than twenty (20) tissue bank operators and medical personnel from Argentina were trained under the IAEA program in the six courses organised in the country. In general, ninety (96) tissue bank operators and medical personnel from eight Latin-American countries were trained in the Buenos Aires regional training centre. From Argentina 16 students graduated in these courses.  相似文献   

11.
In 1986, the National Nuclear Energy Agency (Batan) in Jakarta started the research and development for the setting up of a tissue bank (Batan Research Tissue Bank/BRTB) by preserving fresh amnion or fetal membranes by lyophilisation and then sterilising by gamma irradiation. During the period of 1990 and 2000, three more tissue banks were set up, i.e., Biomaterial Centre in Surabaya, Jamil Tissue Bank in Padang, and Sitanala Tissue Bank in Tangerang. In 1994, BRTB produced bone allografts. The banks established under the IAEA program concentrated its work on the production of amnion, bone and soft tissues allografts, as well as bone xenografts. These tissues (allografts and xenografts) were sterilised using gamma irradiation (about 90%) and the rest were sterilized by ETO and those products have been used in the treatment of patients at more than 50 hospitals in Indonesia. In 2004, those tissue banks produced 8,500 grafts and 5,000 of them were amnion grafts for eye treatment and wound dressing. All of those grafts were used for patients as well as for research. In 2006, the production increased to 9,000 grafts. Although the capacity of those banks can produce more grafts, we are facing problems on getting raw materials from suitable donors. To fulfill the demand of bone grafts we also produced bone xenografts. The impact of the IAEA program in tissue banking activities in Indonesia can be summarised as follows: to support the national program on importing substitutes for medical devices. The price of imported tissues are between US$ 50 and US$ 6,000 per graft. Local tissue bank can produce tissues with the same quality with the price for about 10–30% of the imported tissues.  相似文献   

12.
The Instituto Nacional de Investigaciones Nucleares (ININ, The National Nuclear Research Institute) received during 1997-1998 strong support of the International Atomic Energy Agency (IAEA), to establish the first and only one tissue bank (BTR ININ tissue bank) in Mexico that uses ionising radiation as sterilising agent. In that time, the BTR staff was trained in different tissue banks in several countries. Basic equipment for tissue processing donated by the IAEA was received in 1998. In July, 1999 the Mexican Health Secretariat gave the Sanitary License No. 1062000001 to the BTR to operate as an official organ and tissue bank. In August, 2001 the ININ and the Hospital Materno Infantil (HMI-ISSEMYM) signed an agreement to collaborate in amnion processing. The hospital is responsible for donor selection, serology tests, tissue procurement and washing, since this hospital is the BTR amnion supplier. The tissues are collected by ININ weekly with complete documentation. The BTR is responsible for processing: cleaning, air drying, packaging, labelling, microbiological control and sterilisation by gamma irradiation. The sterilised tissue is kept under quarantine for 6 months to obtain the results of the donor second serology test. From March to June, 2002 the BTR has processed 347.86 units (50 cm(2) each), is say, 17,393 cm(2). In addition, the pig skin xenograft process has been implemented and a protocol for clinical applications of it is running at the Hospital Central Sur de Alta Especialidad (PEMEX). Also the ININ tissue bank present status and perspectives are described.  相似文献   

13.
The purpose of this statistical analysis is to determine what factors are the major contributors to bacterial contamination of recovered human cadaveric tissue. In this study we analyzed factors that could contribute to an increased bacterial bioburden from recovered tissues using the following independent variables: (1) the physical recovery environment; (2) recovery before or after an autopsy; (3) the length of time from death to recovery; (4) the cause of death; (5) the length of time to complete recovery; (6) the number of staff involved with the tissue recovery; and (7) the impact of organ and skin recovery on musculoskeletal contamination rates.In these analyses we used analysis of variance of main effects on data from seven tissue banks. The scale of the analysis included 1036 donors each having multiple cultures to better control for the inherent large variation in this type of data. We looked at several dependent variables. The dependent variable that was most useful was percent positive cultures.The results of the combined data differed from analyzing the tissue banks individually. The differences in each tissue bank's procedures and techniques were responsible for most of the variability. Depending on how the data was organized, statistically significant increases in bioburden were seen with: (1) recoveries after autopsy; (2) location of the recovery; (3) length of time taken for a recovery; (4) size of the recovery team; and (5) the impact of organ and skin recovery on musculoskeletal contamination rates.In conclusion, statistical analysis of recovery cultures can be a powerful tool that may be used to indicate problems within any bank's recovery procedures or techniques.  相似文献   

14.
双重条形码的应用改变了临床组织样本库传统的记录模式,具有信息录入、储存、浏览、检索以及数据维护、管理等功能,并具有安全、高效、操作方便等优点。可准确、动态地反映储存于组织样本库中的样本信息,从而大大提高组织样本库的样本管理效率和质量。  相似文献   

15.
The Cardiovascular Tissue Banking Standards are designed as an addition to the General Standards of the European Association of Tissue Banks to provide a minimum acceptable level for the donation, processing, storage, testing, labelling and distribution of cardiac tissue throughout Europe. The aim is that all heart valve banks in Europe should work to these Standards so that heart valves can be exchanged between countries without having to check the individual protocols of the donor processing facility. The writing of the Standards has been performed by the Heart Valve Council of EATB with input from cardiac surgeons. It is proposed that once the Standards are accepted they will form the document on which EATB may accredit tissue banks in the future and may form the basis on which National Legislation for Tissue Banking is based.  相似文献   

16.
The establishment of a Tissue Bank and the science of Tissue Banking in South Africa started in the 1960s and is still developing. This article describes the development and growth of Tissue Banking in South Africa. The current emphasis is to supply viable bone products that have been produced under the best possible quality controlled circumstances; with the collaboration between different Organ Donation Organisations. Through collaboration, a dramatic increase in the number of donors was noted over the years. Concurrently, there was a dramatic increase in the usage of different allograft products and now necessitates the development of new graft materials for expanding patient options. As an ongoing concern, the Tissue Bank in South Africa experienced an ever increase in costs to enhance quality/safety controls: increase in historical patient information, documentation and serological testing in a population struggling to control HIV. To date, the South African Tissue Bank has not experienced any untoward patient incidence since the 1960s and currently is getting over 500 donors per year.  相似文献   

17.
The Tissue Banking Project in Chile started as an idea in 1996. Before 1996 in Chile there were only a few small bone banks working with their own standards of quality. The first tissue bank (LPTR) was established in 1998, with the technical and financial support of the IAEA. Since 2001, the laboratory began to produce tissues for clinical use, starting with the processing of 6 amniotic membranes, 2 femoral heads and 19 batches of pig skin. In 2002, the laboratory began the processing of human skin. Five students from Chile have graduated from training courses carried out in Singapore and in Buenos Aires under the IAEA training program since 1998. The amount of tissues produced and sterilized using ionizing radiation by the LPTR in the last years was 320,000 cm2 of human skin, 553,600 cm2 of pig skin, 5,400 cm2 of amniotic membrane, 49 femoral heads, 3 large bones and 300 g of bovine bone. The patients treated with sterilized tissues produced by the LPTR were 200 deep burns treated with human skin and pig skin, 40 bone transplants from femoral heads, 77 ophthalmologic patients treated with amniotic membrane and 150 bovine bone transplants for dental treatments.  相似文献   

18.
Irradiation as a Safety Procedure in Tissue Banking   总被引:2,自引:0,他引:2  
The Central Tissue Bank in Warsaw was established in 1963 and since then ionising radiation has been routinely applied to sterilise tissue grafts. Connective tissue grafts such as bone, cartilage, tendons, sclera, pericardium, skin, acellular dermis and amnion irradiated with a dose of 35 kGy in a 60Co source and/or with an electron beam 10 MeV accelerator are prepared in our Tissue Bank and two other multi-tissue banks operating in Poland. Over 250,000 radiation-sterilised tissue grafts have been prepared and used in hospitals throughout Poland and no infectious disease transmission or other adverse post-transplantation reactions have been reported up to today. It should be kept in mind however, that high doses of ionising radiation can evoke numerous chemical and physical changes that may affect the biological quality of tissue allografts. Therefore, interdisciplinary research has been undertaken at the Central Tissue Bank in Warsaw to establish the origin and stability of free radicals and other paramagnetic entities induced by irradiation in bone. The effects of various preservation procedures (e.g. lyophilisation, deep-freezing) and irradiation conditions (doses, temperature of irradiation) on the osteoinductive potential and mechanical properties of bone and on the degradation of collagen, a major constituent of all connective tissue grafts, have been also studied. The results of these studies indicate that radiation-induced changes can be diminished by modification of tissue preservation methods and that, to some extent, it is possible to reduce undesired radiation-induced damage to the tissue grafts.  相似文献   

19.
There has been an increase in the demand for allograft bone in recentyears. The Odense University Hospital bone bank has been in function since1990,and this paper outlines our results during the 10 year period 1990–1999.Potential donors were screened by contemporary banking techniques which includea social history, donor serum tests for HIV, hepatitis B and C, and graftmicrobiology. The bones were stored at –80 °C. No typeofsecondary sterilisation was made. 423 femoral heads were approved and donatedto300 patients,1–6 heads/operation. The allografts have been used mainly toreconstruct defects at revision hip arthroplasty (34%), and for fracturesurgery(24%). 7 % of all transplanted patients were reoperated because of infection.Inthe hip revision group the infection rate was 4 %. There were no cases ofdisease transmission. During the 10 year period there was a change in theclinical use of the allografts. In the first years the allografts were mainlyused for spinal fusion surgery, but today the majority are used in hip revisionand fracture surgery. The clinical results correspond to those reported inlarger international series.  相似文献   

20.
In Malaysia, tissue banking activities began in Universiti Sains Malaysia (USM) Tissue Bank in early 1990s. Since then a few other bone banks have been set up in other government hospitals and institutions. However, these banks are not governed by the national authority. In addition there is no requirement set by the national regulatory authority on coding and traceability for donated human tissues for transplantation. Hence, USM Tissue Bank has taken the initiatives to adopt a system that enables the traceability of tissues between the donor, the processed tissue and the recipient based on other international standards for tissue banks. The traceability trail has been effective and the bank is certified compliance to the international standard ISO 9001:2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号