首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites’ maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence.  相似文献   

2.
Grouping behaviours (e.g. schooling, shoaling and swarming) are commonly explicated through adaptive hypotheses such as protection against predation, access to mates or improved foraging. However, the hypothesis that aggregation can result from manipulation by parasites to increase their transmission has never been demonstrated. We investigated this hypothesis using natural populations of two crustacean hosts (Artemia franciscana and Artemia parthenogenetica) infected with one cestode and two microsporidian parasites. We found that swarming propensity increased in cestode‐infected hosts and that red colour intensity was higher in swarming compared with non‐swarming infected hosts. These effects likely result in increased cestode transmission to its final avian host. Furthermore, we found that microsporidian‐infected hosts had both increased swarming propensity and surfacing behaviour. Finally, we demonstrated using experimental infections that these concurrent manipulations result in increased spore transmission to new hosts. Hence, this study suggests that parasites can play a prominent role in host grouping behaviours.  相似文献   

3.
Reproductive and life span traits were measured for two obligately parthenogenetic (Artemia parthenogenetica) and three sexual (two A. franciscana and one A. sinica) brine shrimp populations. For each population, clonal lineages or single mating pairs were followed through one life cycle. The relative contributions of environmental and genetic components to total phenotypic variation for 10 life-history traits in response to environmental stress (0, 10, 25 ppb Cu) were estimated. Within treatment variation (CVW) was 39% higher for sexual populations than parthenogenetic populations, with significant (p<0.05) differences in total number of offspring and number of nauplii. CVA (the change in variance due to rearing in different environments), when averaged for all traits and all populations, increased variability by 9.9%. CVA was 44.2% higher for sexual than parthenogenetic populations, with significant differences in number of broods, total number of offspring, and number of nauplii. The average genetic component of variation for the 10 traits was 23.44%, ranging from 5.26% for number of cysts to 44.87% for number of nauplii. For all traits, the environmental component of variance is greater than the genetic component measured, but every trait has a genetic component, which can potentially be acted upon by selection.  相似文献   

4.
The goal of this study was to examine the fatty acid (FA) profile of two Artemia species, A. persimilis (Argentina) and A. franciscana (Great Salt Lake,Utah; USA) in coexistence at mesocosm scale. The experiment was carried out to 1) evaluate putative differences in the fatty acid composition of both species while they share resources and 2) to investigate the causes of such differences. Although the coexistence of these species in nature has not yet been observed, it remains possible that this situation may arise in the future mainly due to the invasive ability of A. franciscana. FA analyses were performed on individuals as well as on pooled biomasses of each species, and integrated in multivariate principal components analysis (PCA). Comparison of the relative abundance of FA between the two species revealed that interspecific differences in FA composition are greater than intraspecific variability. Higher percentages of unsaturation were found in the fatty acids of A. persimilis compared to A. franciscana, demonstrating that aside from a high phenotypic effect of diet on the FA composition of the animals, a species-specific genotypic effect should not be discarded.  相似文献   

5.
1. Migratory waterbirds are likely to have a major role in the spread of many exotic aquatic invertebrates by passive dispersal. However, in the field, this has so far only been confirmed in the case of the American brine shrimp Artemia franciscana, which is spreading quickly around the Mediterranean region. 2. We compared experimentally the capacity of A. franciscana and the native brine shrimp Artemia parthenogenetica to disperse via migratory shorebirds. After Artemia resting eggs (cysts) were fed to Redshank Tringa totanus and Dunlin Calidris alpina, we compared the proportion that survived gut passage, their hatchability and their retention time within the gut. We also tested the ability of cysts to stick to the feathers of Black‐tailed Godwit Limosa limosa. 3. The proportion of ingested cysts retrieved from faeces was the same for each Artemia species (8%), and there were no significant differences in retention time (mean 1.2 h and maximum 10 h for A. parthenogenetica, 1.4 and 12 h for A. franciscana) or hatchability (11% versus 14%). The two shorebird species showed similar retention times and retrieval rates, but cysts recovered from Dunlin had a significantly higher hatchability. Only one of the 1000 A. parthenogenetica cysts and three of the 1000 A. franciscana cysts stuck to feathers. 4. These results indicate that both non‐native and native brine shrimps have a similar high capacity for endozoochory via birds, and that the invasiveness of A. franciscana is probably explained by its competitive superiority owing to high fecundity and release from cestode parasitism. Owing to their different migratory behaviour, Redshank and Dunlin are likely to have different roles as brine shrimp vectors. Brine shrimps provide a suitable model for understanding the role of birds in the dispersal of exotic aquatic invertebrates.  相似文献   

6.
The brine shrimp Artemia is a well known animal extremophile adapted to survive in very harsh hypersaline environments. We compared the small stress proteins artemin and p26, and the chaperone hsc70 in encysted embryos (cysts) of the New World species, A. franciscana and A. persimilis. Cysts of the former, from San Francisco Bay, USA (SFB), were used essentially as a reference for these proteins, while both species were from locations in Chile where they occur in habitats at latitudinal extremes, the Atacama desert and Patagonia. These two species are phylogenetically distant, A. persimilis being closer to the Old World species, whilst A. franciscana is considered younger and undergoing evolutionary expansion. Using western blotting we found all three stress proteins in cysts from these five populations in substantial although variable amounts. The protein profiles revealed by Coomassie staining after electrophoresis (SDS-PAGE) were similar qualitatively, in spite of marked differences in the habitats from which these populations originated, and the long time since they diverged. We interpret these findings as further evidence for the adaptive importance of these three conserved proteins in coping with the variable, but severe stresses these encysted embryos endure.  相似文献   

7.
In this study we conducted field investigations to examine the effects of native Cuscuta australis on three exotic invasive plants (i.e. Ipomoea cairica, Mikania micrantha, and Wedelia trilobata) and on the invaded native communities. The results showed that C. australis produced high infection rates on the exotic invasive hosts but low ones on the native species. Furthermore, the results showed that C. australis exhibited vigorous growth and high reproduction when it grew on M. micrantha and W. trilobata, indicating that these exotic invasive plants are more rewarding hosts than are native plants for C. australis. C. australis infection was positively related to the growth traits (e.g. biomass, cover, and total leaf area) and nutrient contents (e.g. N, P, and K) of the exotic invasive plants. The infections of C. australis significantly decreased the growth and nutrient contents of exotic invasive hosts, and the host?Cparasite interactions benefited the native species with increased species richness and biodiversity, facilitating the recovery of invaded native communities. This study provides a model for a native agent to both resist exotic invasive plants and benefit other native species. Furthermore, it indicates that certain native agents in invaded regions can be an effective and environmentally benign alternative to traditional biological control.  相似文献   

8.
空心莲子草响应南方菟丝子寄生的生长-防御权衡   总被引:1,自引:0,他引:1  
郭素民  李钧敏  李永慧  闫明 《生态学报》2014,34(17):4866-4873
为探讨全寄生植物南方菟丝子(Cuscuta australis)防治入侵植物空心莲子草(Alternanthera philoxeroides)的可行性,以二者野外天然生长的种群为研究对象,分析南方菟丝子寄生对空心莲子草生长及防御的影响,阐明空心莲子草在受到寄生胁迫时如何权衡自身生长与防御的关系,进而发展出一套应对南方菟丝子寄生的生长-防御策略。结果显示:(1)南方菟丝子寄生显著改变空心莲子草茎的形态,茎直径和平均节间长均增加,茎直径变化极显著(P0.01);(2)南方菟丝子寄生显著减少空心莲子草叶片数,但同时显著增加后者茎的分枝数,而茎上的节是潜在的无性繁殖体,故有利于空心莲子草的克隆繁殖;此外,南方菟丝子寄生显著降低了空心莲子草的根、茎、叶生物量和总生物量,抑制空心莲子草的生长;(3)南方菟丝子寄生显著增加空心莲子草茎的单宁、总酚、三萜皂苷含量,增强其防御能力;(4)南方菟丝子寄生的空心莲子草的生物量与茎部木质素、三萜皂苷、单宁和总酚含量均呈现显著负相关性(P0.01),对照组则不存在相关性;且寄生组较对照组相比,生物量的相对百分比显著低于对照组(P0.01),而用于防御的次生代谢产物总含量的相对百分比显著高于对照组(P0.01)。以上结果表明,受到南方菟丝子寄生胁迫后,空心莲子草改变自身的生长-防御策略,减少营养生长投入而将更多的资源投向克隆繁殖,同时增强对"防御"物质的投入,增强其防御能力,以利于后代生存和繁衍。  相似文献   

9.
From the cloned mitochondrial DNAs (mtDNAs) isolated from two bisexual species, one Mediterranean, Artemia salina, and one American, Artemia franciscana, and two parthenogenetic (diploid and tetraploid) strains of Artemia parthenogenetica collected in Spain, physical maps have been constructed and compared. They are extremely different among themselves, much more than the differences between Drosophila melanogaster and D. yakuba and in the same range of different mammalian species such as mouse/rat or man/cow. The nucleotide sequences of two regions of mtDNA encoding parts of the cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) genes have been determined in the two bisexual species and the two parthenogenetic strains. Comparisons of these sequences have revealed a high degree of divergence at the nucleotide level, averaging more than 15%, in agreement with the differences found in the physical maps. The majority of the nucleotide changes are silent and there is a strong bias toward transitions, with the CT substitutions being highly predominant. The evolutionary distance between the two Artemia parthenogenetica is high and there is no clear relationship with any of the bisexual species, including the one present nowadays in Spain. Using a combination of molecular (mtDNA) and morphological markers it is possible to conclude that all of these Artemia isolates should be actually considered as belonging to different species, even the two Artemia parthenogenetica diploidica and tetraploidica.On sabbatical leave from Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madridearly Italian artemiologists to designate the Medi-Beatriz Batuecas died in an accident during the Christmas holy days of 1988 after she had initiated this workCorrespondence to: R. Garesse  相似文献   

10.
Moscatello  S.  Belmonte  G.  Mura  G. 《Hydrobiologia》2002,486(1):201-206
The co-occurrence of Artemia parthenogenetica Bowen & Sterling, 1978 and Branchinella spinosa Milne-Edwards, 1840, was previously only supposed, on the basis of finding their cysts in the same lagoon, but active stages were never recorded together. In a saline lake in south eastern Italy, populations of the two species were observed for two years. A. parthenogenetica was typical of the early wet season (October–January), while B. spinosa, even if it was present before, developed in the late part of the wet season (February–May). Adult A. parthenogenetica were recorded only in the season 1999–2000. The seasonal distribution of A. parthenogenetica is probably controlled by abiotic conditions (i.e., photoperiod, temperature, conductivity, and rainfall); however, competition between specimens of similar body size (e.g., adults of A. parthenogenetica, and juveniles of B. spinosa) could explain the lower numbers of B. spinosa population in winter. The discovery of cysts of both species deep in the sediment of the lake suggests a long-lasting co-occurrence of these two Anostraca.  相似文献   

11.
The brine shrimp Artemia is a complex genus containing sexual species and parthenogenetic lineages. Artemia franciscana is native to America and its cysts (diapausing eggs) are used worldwide as a food source in aquaculture. As a consequence, this anostracan has become an invasive species in many hypersaline aquatic ecosystems of other continents. Parthenogenetic Artemia lineages occur only in the Old World. Ten and five microsatellite markers were developed to characterize two populations for A. franciscana and two populations for diploid parthenogenetic Artemia, respectively. For A. franciscana the number of alleles ranged from 11 to 58 per locus, while for parthenogens the number of alleles ranged from three to 10. The levels of heterozygosity in A. franciscana and in parthenogens ranged from 0.115 to 0.976 and from 0.000 to 0.971, respectively. These microsatellite loci showed a high population assignment power, which will be useful for future studies of population genetics and invasive processes in Artemia.  相似文献   

12.
The identification of the environmental conditions inducing different ecophysiological responses in the different strains and populations of the brine shrimp Artemia should improve the understanding of their biogeographic distribution. Nauplii from two Argentinean brine shrimp populations, Artemia persimilis from Salinas Grandes de Hidalgo (province of La Pampa) and Artemia franciscana from Laguna Mar Chiquita (province of Cordoba), were grown up until adulthood at different salinities (30, 60, 90, 120 gL−1) and temperatures (12, 21, 28°C). The aim was to assess the effects of these different conditions on prereproductive life span and reproductive traits. Results evidenced that at 21 and 28°C, at any salinity, A. franciscana from Laguna Mar Chiquita attained higher survival and fecundity, after a shorter prereproductive period, than A. persimilis from Salinas Grandes de Hidalgo. These data support that A. franciscana, considered a superspecies, exhibits higher phenotypic plasticity than A. persimilis, and that A. persimilis is better adapted to lower temperatures than A. franciscana. These differences in temperature and salinity tolerance could explain the present distribution of these two species in the South Cone in South America. Handling Editor: J. Melack  相似文献   

13.
Globalization has provided opportunities for parasites/pathogens to cross geographic boundaries and expand to new hosts. Recent studies showed that Nosema ceranae, originally considered a microsporidian parasite of Eastern honey bees, Apis cerana, is a disease agent of nosemosis in European honey bees, Apis mellifera, along with the resident species, Nosema apis. Further studies indicated that disease caused by N. ceranae in European honey bees is far more prevalent than that caused by N. apis. In order to gain more insight into the epidemiology of Nosema parasitism in honey bees, we conducted studies to investigate infection of Nosema in its original host, Eastern honey bees, using conventional PCR and duplex real time quantitative PCR methods. Our results showed that A. cerana was infected not only with N. ceranae as previously reported [Fries, I., Feng, F., Silva, A.D., Slemenda, S.B., Pieniazek, N.J., 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 32, 356-365], but also with N. apis. Both microsporidia produced single and mixed infections. Overall and at each location alone, the prevalence of N. ceranae was higher than that of N. apis. In all cases of mixed infections, the number of N. ceranae gene copies (corresponding to the parasite load) significantly out numbered those of N. apis. Phylogenetic analysis based on a variable region of small subunit ribosomal RNA (SSUrRNA) showed four distinct clades of N. apis and five clades of N. ceranae and that geographical distance does not appear to influence the genetic diversity of Nosema populations. The results from this study demonstrated that duplex real-time qPCR assay developed in this study is a valuable tool for quantitative measurement of Nosema and can be used to monitor the progression of microsprodian infections of honey bees in a timely and cost efficient manner.  相似文献   

14.
《Biological Control》2006,36(1):32-48
The leaf beetle, Diorhabda elongata (Brullé) sensu lato, was released in 2001 for the classical biological control of exotic saltcedars, a complex of invasive Tamarix species and hybrids. It did not establish at sites south of 37°N latitude where summer daylengths are below the critical photoperiod of the northern-adapted populations of the beetle that were released. Therefore, we assessed the host specificity of four D. elongata populations collected from more southern latitudes in the Old World (Tunisia, Crete, Uzbekistan, and Turpan, China). All populations were similar to each other and the previously released populations of D. elongata in their host specificity. Larval/pupal survival for all populations was 34–100% on Tamarix test plants, 0–76% on native Frankenia plants (both in the order Tamaricales), and 0% on the remaining 28 species of plants on which all the larvae died as 1st instars. D. elongata laid high numbers of eggs on saltcedar, generally fewer eggs on athel (a moderately valued evergreen species of Tamarix) except for Uzbekistan beetles, and few to no eggs on three species of Frankenia. Few to no adults were found on Frankenia plants which also were poor maintenance hosts. The release of any of the four D. elongata populations in the southern US and northern Mexico should pose no risk to plants outside the order Tamaricales and a low risk to native, non-target Frankenia plants. Athel may be less damaged than saltcedar.  相似文献   

15.

Background and Aims

The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species.

Methods

Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences.

Key Results

Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the ‘Old World’ Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica.

Conclusions

The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the ‘local’ Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.  相似文献   

16.
Determining the effect of an invasive species on enzootic pathogen dynamics is critical for understanding both human epidemics and wildlife epizootics. Theoretical models suggest that when a naive species enters an established host–parasite system, the new host may either reduce (‘dilute’) or increase (‘spillback’) pathogen transmission to native hosts. There are few empirical data to evaluate these possibilities, especially for animal pathogens. Buggy Creek virus (BCRV) is an arthropod-borne alphavirus that is enzootically transmitted by the swallow bug (Oeciacus vicarius) to colonially nesting cliff swallows (Petrochelidon pyrrhonota). In western Nebraska, introduced house sparrows (Passer domesticus) invaded cliff swallow colonies approximately 40 years ago and were exposed to BCRV. We evaluated how the addition of house sparrows to this host–parasite system affected the prevalence and amplification of a bird-associated BCRV lineage. The infection prevalence in house sparrows was eight times that of cliff swallows. Nestling house sparrows in mixed-species colonies were significantly less likely to be infected than sparrows in single-species colonies. Infected house sparrows circulated BCRV at higher viraemia titres than cliff swallows. BCRV detected in bug vectors at a site was positively associated with virus prevalence in house sparrows but not with virus prevalence in cliff swallows. The addition of a highly susceptible invasive host species has led to perennial BCRV epizootics at cliff swallow colony sites. The native cliff swallow host confers a dilution advantage to invasive sparrow hosts in mixed colonies, while at the same sites house sparrows may increase the likelihood that swallows become infected.  相似文献   

17.
Seven populations of Heterodera trifolii from Arkansas, Kentucky, Pennsylvania, and Australia plus 3 or 4 single-cyst isolates (SCI) from each population were tested for reproduction on seven species of plants to compare the host preferences among and within populations. Common lespedeza, Kummerowia striata cv. Kobe, was a good host for all populations and isolates. Therefore, a plant was considered to be a host if the number of females produced on it was 10% or more of the number on Kobe. All seven populations reproduced on Trifolium repens and T. pratense. None reproduced on Beta vulgaris or Glycine max. One single-cyst isolate from the Australian population produced a few females on T. pratense. The Australian population maintained on carnation, Dianthus caryophyllus, produced females on carnation but not on curly dock, Rumex crispus. However, its subpopulation maintained on T. repens produced females on R. crispus but not on carnation. Four of the other six populations produced females on R. crispus, and four produced females on carnation. Differences in host range were observed among seven of the mother populations and their SCI, and among isolates within each population. Five host range patterns were found in populations and SCI of H. trifolii. Significant quantitative differences occurred among populations in the numbers of females on most hosts, between isolates and their original populations, and among isolates from the same population. SCI selected from white clover produced fewer females on a series of test hosts and had host ranges the same as or narrower than those of the original populations. However, SCI selected from Kobe lespedeza had more females on some hosts and had host ranges the same as or wider than those of the original populations. The host ranges of all populations and SCI of H. trifolii were different from those of populations and SCI of race 3 of H. glycines and H. lespedezae.  相似文献   

18.
Parasites are often key players in biological invasions since they can mediate the impact of host invasions or can themselves become invasive species. However, the nature and extent of parasite-mediated invasions are often difficult to delineate. Here, we used individual-based, weighted bipartite networks to study the roles (degrees of interactions of individuals in a modular network according to their within- and among-module connections) played by native and invasive host individuals to their parasite communities. We studied two phylogenetically and ecologically close fish species, Mugil cephalus s.l. and Planiliza haematocheilus (Teleostei: Mugilidae). Planiliza haematocheilus is native to the Sea of Japan and invasive in the Sea of Azov whereas, M. cephalus s.l. is native to both seas. Based on the common evolutionary history that drives native host–parasite networks, we hypothesised that 1) native networks have higher modularity than invaded ones; and 2) invasive hosts in the invaded area play a peripheral role to structure parasite communities. We analysed the whole parasite community and subsets based on transmission strategy and host specificity of the parasite species to establish whether modularity and host roles are related to these features in the native and invaded areas. All networks were found to be modular. However, modularity tended to be higher in networks of the native area rather than those of the invaded area. Host individuals of both fish species played similar roles in the native area, whereas invasive hosts played a peripheral role in the networks of the invaded area. We propose that long-term monitoring of the roles of invasive hosts in parasite communities can be a useful proxy for estimating the maturity of the establishment of the invasive hosts in an ecosystem.  相似文献   

19.
Ascoviruses are double-stranded DNA viruses which cause fatal disease in lepidopteran host larvae. They induce a unique pathology, causing cleavage of host cells into virion-containing vesicles. With the single exception of Diadromus pulchellus ascovirus, all ascoviruses have been exclusively reported from the Noctuidae. To investigate whether Heliothis virescens AV (HvAV-3e) has a broader host range at the family level, larvae of Crocidolomia pavonana F. (Lepidoptera: Crambidae), a major pest of brassica crops in tropical and sub-tropical regions of the Old World and Australasia, were inoculated with HvAV-3e. Larvae were readily infected by the ascovirus and feeding, growth and survival were significantly affected. However, the milky white discolouration of the haemolymph which is characteristic of ascovirus infection in noctuid hosts was not apparent. In further contrast to infected noctuid host larvae that do not develop to the pupal stage, a significant proportion of infected C. pavonana larvae pupated but all were killed at this stage. Thus, C. pavonana appears to be a semi-permissive host of the ascovirus, the presence of such hosts in the field might be an explanation for the conundrum for the ascovirus-noctuid-wasp relationship, helping explain the persistence of the ascovirus.  相似文献   

20.
Parasites can strongly influence the success of biological invasions. However, as invading hosts and parasites may be derived from a small subset of genotypes in the native range, it is important to examine the distribution and invasion of parasites in the context of host population genetics. We demonstrate that invasive European populations of the North American Crangonyx pseudogracilis have experienced a reduction in post-invasion genetic diversity. We predict that vertically transmitted parasites may evade the stochastic processes and selective pressures leading to enemy release. As microsporidia may be vertically or horizontally transmitted, we compared the diversity of these microparasites in the native and invasive ranges of the host. In contrast to the reduction in host genetic diversity, we find no evidence for enemy release from microsporidian parasites in the invasive populations. Indeed, a single, vertically transmitted, microsporidian sex ratio distorter dominates the microsporidian parasite assemblage in the invasive range and appears to have invaded with the host. We propose that overproduction of female offspring as a result of parasitic sex ratio distortion may facilitate host invasion success. We also propose that a selective sweep resulting from the increase in infected individuals during the establishment may have contributed to the reduction in genetic diversity in invasive Crangonyx pseudogracilis populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号