首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Progesterone (PROG) has been shown to protect the brain from traumatic injury and is now in Phase III clinical trials. Our work shows that PROG's beneficial effects can be reduced in vitamin D hormone (VDH)-deficient subjects. VDH can modulate neuronal apoptosis, trophic factors, inflammation, oxidative stress, excitotoxicity, and myelin and axon repair. We investigated whether VDH combined with PROG could improve behavioral outcomes more than PROG alone in VDH-sufficient rats given bilateral contusions of the medial frontal cortex. PROG and different doses of VDH (1 μg/kg, VDH1; 2.5 μg/kg, VDH2; 5 μg/kg, VDH3) were injected intraperitoneally 1 h post-injury. Eight additional doses of PROG were given subcutaneously over 8 days with tapering over the last 2 days. Neurobehavioral tests, necrotic cavity, neuronal death and activation of astrocytes were evaluated 21 days post-injury. We found that PROG and PROG + VDH preserve spatial memory processing. VDH1 + PROG improved performance in acquisition more effectively than PROG alone, indicating that the low VDH dose is optimal for combination therapy. There were no significant differences in necrotic cavity size among the groups. The density of positive staining for reactive astrocytes (glial fibrillary acidic protein (GFAP)) increased and the cell bodies and processes of GFAP-positive cells were enlarged in the PROG + VDH1 group. Our data indicate that the combination of PROG and VDH is more effective than PROG alone in preserving spatial and reference memory, and that PROG plus low-dose VDH can activateGFAP reactions up to 21 days after injury. This effect may be one of the mechanisms underlying PROG's neuroprotective effects in combination with VDH.  相似文献   

2.
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect.  相似文献   

3.
Chen CC  Hung TH  Wang YH  Lin CW  Wang PY  Lee CY  Chen SF 《PloS one》2012,7(1):e30294

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.

Conclusions/Significance

Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.  相似文献   

4.
Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery.  相似文献   

5.
Despite improved therapeutic methods, CNS toxicity resulting from cancer treatment remains a major cause of post-treatment morbidity. More than half of adult patients with cranial irradiation for brain cancer develop neurobehavioral/cognitive deficits that severely impact quality of life. We examined the neuroprotective effects of the neurosteroid progesterone (PROG) against ionizing radiation (IR)-induced neurobehavioral/cognitive deficits in mice. Male C57/BL mice were exposed to one of two fractionated dose regimens of IR (3 Gy × 3 or 3 Gy × 5). PROG (16 mg/kg; 0.16 mg/g) was given as a pre-, concurrent or post-IR treatment for 14 days. Mice were tested for short- and long-term effects of IR and PROG on neurobehavioral/cognitive function on days 10 and 30 after IR treatment. We evaluated both hippocampus-dependent and -independent memory functions. Locomotor activity, elevated plus maze, novel object recognition and Morris water maze tests revealed behavioral deficits following IR. PROG treatment produced improvement in behavioral performance at both time points in the mice given IR. Western blot analysis of hippocampal and cortical tissue showed that IR at both doses induced astrocytic activation (glial fibrillary acidic protein), reactive macrophages/microglia (CD68) and apoptosis (cleaved caspase-3) and PROG treatment inhibited these markers of brain injury. There was no significant difference in the degree of deficit in any test between the two dose regimens of IR at either time point. These findings could be important in the context of patients with brain tumors who may undergo radiotherapy and eventually develop cognitive deficits.  相似文献   

6.
A prevailing neuroinflammation hypothesis is that increased production of proinflammatory cytokines contributes to progressive neuropathology, secondary to the primary damage caused by a traumatic brain injury (TBI). In support of the hypothesis, post-injury interventions that inhibit the proinflammatory cytokine surge can attenuate the progressive pathology. However, other post-injury neuroinflammatory responses are key to endogenous recovery responses. Therefore, it is critical that pharmacological attenuation of detrimental or dysregulated neuroinflammatory processes avoid pan-suppression of inflammation. MW151 is a CNS-penetrant, small molecule experimental therapeutic that restores injury- or disease-induced overproduction of proinflammatory cytokines towards homeostasis without immunosuppression. Post-injury administration of MW151 in a closed head injury model of mild TBI suppressed acute cytokine up-regulation and downstream cognitive impairment. Here, we report results from a diffuse brain injury model in mice using midline fluid percussion. Low dose (0.5–5.0 mg/kg) administration of MW151 suppresses interleukin-1 beta (IL-1β) levels in the cortex while sparing reactive microglia and astrocyte responses. To probe molecular mechanisms, we used live cell imaging of the BV-2 microglia cell line to demonstrate that MW151 does not affect proliferation, migration, or phagocytosis of the cells. Our results provide insight into the roles of glial responses to brain injury and indicate the feasibility of using appropriate dosing for selective therapeutic modulation of injurious IL-1β increases while sparing other glial responses to injury.  相似文献   

7.

Purpose

Controlled cortical impact (CCI) models in adult and aged Sprague-Dawley (SD) rats have been used extensively to study medial prefrontal cortex (mPFC) injury and the effects of post-injury progesterone treatment, but the hormone''s effects after traumatic brain injury (TBI) in juvenile animals have not been determined. In the present proof-of-concept study we investigated whether progesterone had neuroprotective effects in a pediatric model of moderate to severe bilateral brain injury.

Methods

Twenty-eight-day old (PND 28) male Sprague Dawley rats received sham (n = 24) or CCI (n = 47) injury and were given progesterone (4, 8, or 16 mg/kg per 100 g body weight) or vehicle injections on post-injury days (PID) 1–7, subjected to behavioral testing from PID 9–27, and analyzed for lesion size at PID 28.

Results

The 8 and 16 mg/kg doses of progesterone were observed to be most beneficial in reducing the effect of CCI on lesion size and behavior in PND 28 male SD rats.

Conclusion

Our findings suggest that a midline CCI injury to the frontal cortex will reliably produce a moderate TBI comparable to what is seen in the adult male rat and that progesterone can ameliorate the injury-induced deficits.  相似文献   

8.

Background

Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro.

Conclusions/Significance

Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis following TBI, at least partially via the PI3K/Akt signaling pathway.  相似文献   

9.
In this study, using two different injury models in two different species, we found that early post-injury treatment with N-Acetyl Cysteine (NAC) reversed the behavioral deficits associated with the TBI. These data suggest generalization of a protocol similar to our recent clinical trial with NAC in blast-induced mTBI in a battlefield setting [1], to mild concussion from blunt trauma. This study used both weight drop in mice and fluid percussion injury in rats. These were chosen to simulate either mild or moderate traumatic brain injury (TBI). For mice, we used novel object recognition and the Y maze. For rats, we used the Morris water maze. NAC was administered beginning 30–60 minutes after injury. Behavioral deficits due to injury in both species were significantly reversed by NAC treatment. We thus conclude NAC produces significant behavioral recovery after injury. Future preclinical studies are needed to define the mechanism of action, perhaps leading to more effective therapies in man.  相似文献   

10.
Neonatal hypoxia–ischemia (HI) produces neurodegeneration and brain injury, and leads to behavioral and cognitive dysfunction. Hyperbaric oxygen (HBO) treatment may potentially be neuroprotective in HI injury. The aim of this study was to examine any neuroprotection by HBO treatment on long-term neurological function in the rat model of neontatal HI. Seven-day-old rats were subjected to HI or sham surgery. HBO treatment was administered (2.5 ATA for 90 min) 1 h after hypoxia exposure. Sensorimotor (grip test and rota-rod) and cognitive tests (inhibitory avoidance and Morris water maze) were performed at postnatal day 28 to day 60. The extent of brain damage was determined by histological evaluation. Apoptosis, caspase-3 and apoptosis inducing factor (AIF) expression were assessed by immunohistochemistry 12, 24, and 48 h after HI. HI-treated animals had significantly worse sensorimotor and cognitive performances than those in the Sham group. HBO treatment led to significant improvements in neurobehavioral functions compared to the HI group, especially for cognitive performances. Morphological evaluation revealed a remarkable recovery of brain injury in the HBO group. Furthermore, the improvements in neurobehavioral impairments were correlated with the reduction in lesion size of the hippocampus and cerebral cortex. The proportion of apoptotic cells significantly increased with time after HI, and HBO significantly inhibited apoptotic cell death. The proportion of caspase-3 positive cells and nuclear AIF translocation increased and peaked at 24 h after HI injury. HBO-treated rats showed decreased expression of these proteins compared to HI-treated animals. In conclusion, our results suggested that HBO treatment was effective in promoting long-term functional and histological recovery against neonatal HI brain injury. HBO-induced neuroprotection was associated with suppression of apoptosis by inhibiting caspase-3 and AIF-mediated pathways. Further studies evaluating its associated molecular and cellular mechanism are needed.  相似文献   

11.
12.

Background

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that lead to pathological events including neuronal hyperactivity, excessive glutamate release, inflammation, increased blood-brain barrier (BBB) permeability and cerebral edema, altered gene expression, and neuronal dysfunction. It is believed that a drug combination, or a single drug acting on multiple targets, may be an effective strategy to treat TBI. Valproate, a widely used antiepileptic drug, has a number of targets including GABA transaminase, voltage-gated sodium channels, glycogen synthase kinase (GSK)-3, and histone deacetylases (HDACs), and therefore may attenuate a number of TBI-associated pathologies.

Methodology/Principal Findings

Using a rodent model of TBI, we tested if post-injury administration of valproate can decrease BBB permeability, reduce neural damage and improve cognitive outcome. Dose-response studies revealed that systemic administration of 400 mg/kg (i.p.), but not 15, 30, 60 or 100 mg/kg, increases histone H3 and H4 acetylation, and reduces GSK-3 activity, in the hippocampus. Thirty min post-injury administration of 400 mg/kg valproate improved BBB integrity as indicated by a reduction in Evans Blue dye extravasation. Consistent with its dose response to inhibit GSK-3 and HDACs, valproate at 400 mg/kg, but not 100 mg/kg, reduced TBI-associated hippocampal dendritic damage, lessened cortical contusion volume, and improved motor function and spatial memory. These behavioral improvements were not observed when SAHA (suberoylanilide hydroxamic acid), a selective HDAC inhibitor, was administered.

Conclusion/Significance

Our findings indicate that valproate given soon after TBI can be neuroprotective. As clinically proven interventions that can be used to minimize the damage following TBI are not currently available, the findings from this report support the further testing of valproate as an acute therapeutic strategy.  相似文献   

13.

Objective

Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep.

Methods

Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry.

Results

Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury.

Conclusion

Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair.  相似文献   

14.
Mild traumatic brain injuries can lead to long-lasting cognitive and motor deficits, increasing the risk of future behavioral, neurological, and affective disorders. Our study focused on long-term behavioral deficits after repeated injury in which mice received either a single mild CHI (mCHI), a repeated mild CHI (rmCHI) consisting of one impact to each hemisphere separated by 3 days, or a moderate controlled cortical impact injury (CCI). Shams received only anesthesia. Behavioral tests were administered at 1, 3, 5, 7, and 90 days post-injury (dpi). CCI animals showed significant motor and sensory deficits in the early (1–7 dpi) and long-term (90 dpi) stages of testing. Interestingly, sensory and subtle motor deficits in rmCHI animals were found at 90 dpi. Most importantly, depression-like behaviors and social passiveness were observed in rmCHI animals at 90 dpi. These data suggest that mild concussive injuries lead to motor and sensory deficits and affective disorders that are not observed after moderate TBI.  相似文献   

15.
Effects of estrogen therapy on cognitive performance appear to diminish with age and time following the loss of ovarian function. We hypothesize that this is due to a reduction in basal forebrain cholinergic function and that treatment with a cholinergic enhancer can reverse the effect. This study tested whether combining the cholinesterase inhibitor donepezil with estradiol treatment can enhance/restore estradiol effects on cognitive performance in young ovariectomized rats with selective lesions of septal cholinergic neurons. 192IgG-saporin was injected directly into the medial septum to produce selective cholinergic lesions. Rats were then treated with donepezil (Don, daily injections of 3 mg/kg/day, i.p.) or vehicle, and then with 17β-estradiol (E2, administered by silastic capsule implanted s.c.) or an empty capsule. Rats were trained on a delayed matching-to-position (DMP) T-maze task which previous studies have shown is sensitive to ovariectomy and estrogen replacement. Results show that neither estradiol nor donepezil alone significantly enhanced acquisition of the DMP task in rats with cholinergic lesions. Combination therapy was effective, however, depending on the severity of the lesion. Don + E2 significantly enhanced acquisition of the task in rats with partial lesions (< 50% loss of cholinergic neurons), but not in rats with severe lesions. This effect was due largely to a reduction in perseverative behavior. Don + E2 also improved working memory in rats with partial lesions, as evidenced by significantly better performance than controls during increased intertrial delays. These findings suggest that even partial loss of septal cholinergic neurons can reduce effects of estrogen therapy on cognitive performance, and demonstrate that combining a cholinesterase inhibitor with estrogen therapy can help to restore beneficial effects on performance. We propose that combination therapy may have similar beneficial effects in women, particularly in older women who have not used estrogen therapy for many years and are beginning to show signs of cognitive impairment or early Alzheimer's disease.  相似文献   

16.
Evidence that endogenous progesterone (PROG) is neuroprotective after traumatic brain injury (TBI) is supported by the findings that pseudopregnant female rats present less edema and achieve better functional recovery than do male rats. PROG in the nervous system may originate from steroidogenic glands or can be locally synthesized. 3β-Hydroxysteroid dehydrogenase/5-ene-4-ene isomerase (3β-HSD) is the key enzyme in the biosynthesis of PROG. In the present study, we investigated the effects of pseudopregnancy and TBI on brain 3β-HSD mRNA expression and on PROG levels. Twenty-four hours after bilateral contusion of the medial prefrontal cortex of rats, 3β-HSD mRNA expression was analyzed by in situ hybridization while PROG levels were measured by gas chromatography/mass spectrometry. Similar levels of 3β-HSD mRNA expression were observed in males and pseudopregnant females in the non-injured groups. At this time point, there was a significant decrease in the 3β-HSD mRNA expression in the contusion site within the frontal cortex in both males and pseudopregnant females. In all other regions analyzed, 3β-HSD mRNA expression was not affected by TBI and there was no difference between males and pseudopregnant females. The high decrease in the expression of the 3β-HSD mRNA in the lesion site 24 h after TBI suggests a possible decrease in locally synthesized PROG in lesion site without change in the other brain regions. This decrease has less impact in pseudopregnant females since they have high plasmatic and brain levels of PROG compared to males.  相似文献   

17.
18.
It has been suggested that hormone therapy (HT) in postmenopausal women differentially affects verbal and visuo-spatial abilities which mainly rely on left hemisphere (LH) and right hemisphere (RH) functioning, respectively. Thus, it seems likely that HT-related effects on cognition are driven by associated hormonal changes and their impact on functional brain organization, and functional cerebral asymmetries (FCAs) in particular. The present study investigated HT-related effects on FCAs in sixty-seven postmenopausal women who received hormone therapy either with estrogen (E) alone (n =  14), an E-gestagen combination (n =  22) or without HT (control group, n =  31). Saliva levels of free E and progesterone (P) were analyzed using chemiluminescence assays. FCAs were measured with the visual half-field (VHF) technique using a word matching and a figural comparison task. In agreement with previous results, a postmenopausal control group showed a left hemisphere (LH) advantage in the verbal task and a right hemisphere (RH) advantage in visuo-spatial processing. In contrast, both HT groups revealed significantly reduced FCAs in the figural comparison task as a result of an E-related decrease in RH performance. The findings suggest that E-therapy in postmenopausal women can affect visuo-spatial abilities by modulating the functional brain organization and RH functioning in particular.  相似文献   

19.
The amyloid precursor protein (APP) is thought to be neuroprotective following traumatic brain injury (TBI), although definitive evidence at moderate to severe levels of injury is lacking. In the current study, we investigated histological and functional outcomes in APP-/- mice compared with APP+/+ mice following a moderate focal injury, and whether administration of sAPPα restored the outcomes in knockout animals back to the wildtype state. Following moderate controlled cortical impact injury, APP-/- mice demonstrated greater impairment in motor and cognitive outcome as determined by the ledged beam and Barnes Maze tests respectively (p < 0.05). This corresponded with the degree of neuronal damage, with APP-/- mice having significantly greater lesion volume (25.0 ± 1.6 vs. 20.3 ± 1.6%, p < 0.01) and hippocampal damage, with less remaining CA neurons (839 ± 245 vs. 1353 ± 142 and 1401 ± 263). This was also associated with an impaired neuroreparative response, with decreased GAP-43 immunoreactivity within the cortex around the lesion edge compared with APP+/+ mice. The deficits observed in the APP-/- mice related to a lack of sAPPα, as treatment with exogenously added sAPPα post-injury improved APP-/- mice histological and functional outcome to the point that they were no longer significantly different to APP+/+ mice (p < 0.05). This study shows that endogenous APP is potentially protective at moderate levels of TBI, and that this neuroprotective activity is related to the presence of sAPPα. Importantly, it indicates that the mechanism of action of exogenously added sAPPα is independent of the presence of endogenous APP.  相似文献   

20.
Edaravone is a novel free radical scavenger used clinically in patients with acute cerebral infarction; however, it has not been assessed in traumatic brain injury (TBI). We investigated the effects of edaravone on cerebral function and morphology following TBI. Rats received TBI with a pneumatic controlled injury device. Edaravone (3 mg/kg) or physiological saline was administered intravenously following TBI. Numbers of 8-OHdG-, 4-HNE-, and ssDNA-positive cells around the damaged area after TBI were significantly decreased in the edaravone group compared with the saline group (P < 0.01). There was a significant increase in neuronal cell number and improvement in cerebral dysfunction after TBI in the edaravone group compared with the saline group (P < 0.01). Edaravone administration following TBI inhibited free radical-induced neuronal degeneration and apoptotic cell death around the damaged area. In summary, edaravone treatment improved cerebral dysfunction following TBI, suggesting its potential as an effective clinical therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号