首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to stressors can affect an organism's physiology and behavior as well as that of its descendants (e.g. through maternal effects, epigenetics, and/or selection). We examined the relative influence of early life vs. transgenerational stress exposure on adult stress physiology in a species that has populations with and without ancestral exposure to an invasive predator. We raised offspring of eastern fence lizards (Sceloporus undulatus) from sites historically invaded (high stress) or uninvaded (low stress) by predatory fire ants (Solenopsis invicta) and determined how this different transgenerational exposure to stress interacted with the effects of early life stress exposure to influence the physiological stress response in adulthood. Offspring from these high- and low-stress populations were exposed weekly to either sub-lethal attack by fire ants (an ecologically relevant stressor), topical treatment with a physiologically-appropriate dose of the stress-relevant hormone, corticosterone (CORT), or a control treatment from 2 to 43 weeks of age. Several months after treatments ended, we quantified plasma CORT concentrations at baseline and following restraint, exposure to fire ants, and adrenocorticotropic hormone (ACTH) injection. Exposure to fire ants or CORT during early life did not affect lizard stress physiology in adulthood. However, offspring of lizards from populations that had experienced multiple generations of fire ant-invasion exhibited more robust adult CORT responses to restraint and ACTH-injection compared to offspring from uninvaded populations. Together, these results indicate that transgenerational stress history may be at least as important, if not more important, than early life stress in affecting adult physiological stress responses.  相似文献   

2.
Novel or changing environments expose animals to diverse stressors that likely require coordinated hormonal and behavioral adaptations. Predicted adaptations to urban environments include attenuated physiological responses to stressors and bolder exploratory behaviors, but few studies to date have evaluated the impact of urban life on codivergence of these hormonal and behavioral traits in natural systems. Here, we demonstrate rapid adaptive shifts in both stress physiology and correlated boldness behaviors in a songbird, the dark-eyed junco, following its colonization of a novel urban environment. We compared elevation in corticosterone (CORT) in response to handling and flight initiation distances in birds from a recently established urban population in San Diego, California to birds from a nearby wildland population in the species' ancestral montane breeding range. We also measured CORT and exploratory behavior in birds raised from early life in a captive common garden study. We found persistent population differences for both reduced CORT responses and bolder exploratory behavior in birds from the colonist population, as well as significant negative covariation between maximum CORT and exploratory behavior. Although early developmental effects cannot be ruled out, these results suggest contemporary adaptive evolution of correlated hormonal and behavioral traits associated with colonization of an urban habitat.  相似文献   

3.
Experiencing stress during adolescence can increase neophobic behaviors in adulthood, but most tests have been conducted in the absence of conspecifics. Conspecifics can modulate responses to stressors, for example by acting as ‘social buffers’ to attenuate the aversive appraisal of stressors. Here, we investigate the long-term effects of adolescent stress on the behavioral responses to novel stimuli (a mild stressor) across social contexts in an affiliative passerine bird, the zebra finch. During early (days 40–60) or late (days 65–85) adolescence the birds (n = 66) were dosed with either saline or the hormone corticosterone (CORT). CORT was given in order to mimic a physiological stress response and saline was given as a control. In adulthood, the birds' behavioral responses to a novel environment were recorded in both the presence and absence of conspecifics. An acute CORT response was also quantified in adolescence and adulthood. Our findings show clear evidence of social context mediating any long-term effects of adolescent stress. In the presence of familiar conspecifics no treatment effects were detected. Individually, birds dosed with CORT in early adolescence were slower to enter a novel environment, spent more time perching in the same novel environment, and, if female, engaged in more risk assessment. Birds dosed in late adolescence were unaffected. No treatment effects were detected on CORT, but adolescents had a higher CORT concentration than adults. Our results are the first to suggest that familiar conspecifics in adulthood can buffer the long-term effects of stress that occurred during early adolescence.  相似文献   

4.
In songbirds, developmental stress affects song learning and production. Altered hypothalamic–pituitary–adrenal (HPA) axis function resulting in elevated corticosterone (CORT) may contribute to this effect. We examined whether developmental conditions affected the association between adult song and HPA axis function, and whether nutritional stress before and after nutritional independence has distinct effects on song learning and/or vocal performance. Zebra finches (Taeniopygia guttata) were raised in consistently high (HH) or low (LL) food conditions until post-hatch day (PHD) 62, or were switched from high to low conditions (HL) or vice versa (LH) at PHD 34. Song was recorded in adulthood. We assessed the response of CORT to handling during development and to dexamethasone (DEX) and adrenocorticotropic hormone (ACTH) challenges during adulthood. Song learning and vocal performance were not affected by nutritional stress at either developmental stage. Nutritional stress elevated baseline CORT during development. Nutritional stress also increased rate of CORT secretion in birds that experienced stress only in the juvenile phase (HL group). Birds in the LL group had lower CORT levels after injection of ACTH compared to the other groups, however there was no effect of nutritional stress on the response to DEX. Thus, our findings indicate that developmental stress can affect HPA function without concurrently affecting song.  相似文献   

5.
Early life stress has enduring effects on behavior and physiology. However, the effects on hormones and stress physiology remain poorly understood. In the present study, parents of zebra finches of both sexes were exposed to an increased foraging paradigm from 3 to 33 days post hatching. Plasma and brains were collected from chicks at 3 developmental time points: post hatching days 25, 60 and adulthood. Plasma was assayed for testosterone (T), estradiol (E2), and corticosterone (CORT). The paraventricular nucleus of the hypothalamus was assessed for corticotrophin releasing factor (CRH) and glucocorticoid receptor (GR) expression. As expected, body mass was lower in nutritionally stressed animals compared to controls at multiple ages. Nutritionally stressed animals overall had higher levels of CORT than did control and this was particularly apparent in females at post hatching day 25. Nutritionally stressed animals also had a higher number of cells expressing CRH and GR in the paraventricular nucleus of the hypothalamus than did controls. There was an interaction, such that both measures were higher in control animals at PHD 25, but higher in NS animals by adulthood. Females, regardless of treatment, had higher circulating CORT and a higher number of cells expressing CRH than did males. Nutritionally stressed animals also had higher levels of T than did control animals, and this difference was greatest for males at post hatching day 60. There were no effects of nutritional stress on E2. These findings suggest that nutritional stress during development has long-lasting effects on testosterone and stress physiology.  相似文献   

6.
Katharina Gallizzi  Heinz Richner 《Oikos》2008,117(8):1209-1217
Parents can increase their reproductive success by assisting their neonate offspring in parasite defence. In birds, parental tactics include post-hatching parental responses such as increased parental care and pre-hatching maternal effects such as the transfer of maternal antibodies via the egg. These parasite-induced parental responses are known to reduce the effects of parasites on offspring, but their costs for the parasite are largely unknown. In two separate experiments on great tits Parus major we assessed these costs for hen fleas Ceratophyllus gallinae . Half of the parents where exposed to fleas during egg-laying to induce the parental response, while control nests were left flea-free. In experiment 1 parents raised their own young and we measured the effect of combined pre- and post-hatching parental effects, while in experiment 2 a cross-foster design allowed us to assess the effects of pre-hatching maternal effects alone. In both experiments we let fleas take a blood meal on nestlings from either flea-exposed or unexposed parents. We then measured flea-feeding duration, the quantity of extracted blood, and the fleas' subsequent survival time. We found in both experiments that on the largest nestlings of a brood flea survival was significantly reduced by the parental effects, whereas on the smaller nestlings it was independent of parental effects. The pre- and post-hatching parental responses did neither affect duration nor size of a flea blood meal. These results suggest first that the pre-hatching maternal effects, i.e. the substances transferred to the nestling via the egg, have the potential to harm fleas without reducing flea feeding capacity, and second that the strength of the maternal response varies between the nestlings, either because maternal products are unequally distributed among eggs within a clutch, or because large nestlings can build up a response that enhances the effect of the maternal products.  相似文献   

7.
Urban landscapes are associated with abiotic and biotic environmental changes that may result in potential stressors for wild vertebrates. Urban exploiters have physiological, morphological, and behavioral adaptations to live in cities. However, there is increasing evidence that urban exploiters themselves can suffer from urban conditions, especially during specific life‐history stages. We looked for a link between the degree of urbanization and the level of developmental stress in an urban exploiter (the house sparrow, Passer domesticus), which has recently been declining in multiple European cities (e.g., London, UK). Specifically, we conducted a large‐scale study and sampled juvenile sparrows in 11 urban and rural sites to evaluate their feather corticosterone (CORT) levels. We found that juvenile feather CORT levels were positively correlated with the degree of urbanization, supporting the idea that developing house sparrows may suffer from urban environmental conditions. However, we did not find any correlation between juvenile feather CORT levels and body size, mass, or body condition. This suggests either that the growth and condition of urban sparrows are not impacted by elevated developmental CORT levels, or that urban sparrows may compensate for developmental constraints once they have left the nest. Although feather CORT levels were not correlated with baseline CORT levels, we found that feather CORT levels were slightly and positively correlated with the CORT stress response in juveniles. This suggests that urban developmental conditions may potentially have long‐lasting effects on stress physiology and stress sensitivity in this urban exploiter.  相似文献   

8.
In urban habitats, organisms face unique fitness challenges including disturbance from human activity and noise. One physiological mechanism that may be plastically or evolutionarily modified to ameliorate deleterious effects of anthropogenic disturbance is the adrenocortical stress response. Individuals in urban environments may display smaller stress responses, which may prevent pathologies associated with consistent elevation of stress hormones, and may also show differences in baseline corticosterone (CORT, the primary avian stress hormone), due to altered energetic demands or chronic stress. We examined whether stress physiology and condition metrics in male song sparrows Melospiza melodia vary as a function of discrete differences in anthropogenic disturbance level (activity centers and refuges) or with continuous variation in an urbanization score and noise environment. Males breeding in activity centers displayed lower maximal (acute) CORT levels than activity refuge males, and acute CORT also tended to negatively correlate with urbanization score. Baseline CORT did not differ between habitat types, and activity center males also showed no evidence of changes in body mass, hematocrit, or antioxidant capacity. Further, activity center males had higher quality feathers (indicative of higher condition at molt) than activity refuge males. We found no indication that the noise environment altered stress physiology or condition in song sparrows. Overall, results suggest that song sparrows are an urban adapter species, which are not detrimentally affected by unique selective pressures encountered in the urban environment.  相似文献   

9.
Knowledge of the quantitative genetics of resistance to parasitism is key to appraise host evolutionary responses to parasite selection. Here, we studied effects of common origin (i.e. genetic and pre-hatching parental effects) and common rearing environment (i.e. post-hatching parental effects and other environment effects) on variance in ectoparasite load in nestling Alpine swifts (Apus melba). This colonial bird is intensely parasitized by blood sucking louse-flies that impair nestling development and survival. By cross-fostering half of the hatchlings between pairs of nests, we show strong significant effect of common rearing environment on variance (90.7% in 2002 and 90.9% in 2003) in the number of louse-flies per nestling and no significant effect of common origin on variance in the number of louse-flies per nestling. In contrast, significant effects of common origin were found for all the nestling morphological traits (i.e. body mass, wing length, tail length, fork length and sternum length) under investigation. Hence, our study suggests that genetic and pre-hatching parental effects play little role in the distribution of parasites among nestling Alpine swifts, and thus that nestlings have only limited scope for evolutionary responses against parasites. Our results highlight the need to take into consideration environmental factors, including the evolution of post-hatching parental effects such as nest sanitation, in our understanding of host-parasite relationships.  相似文献   

10.
The environmental conditions animals experience during development can have sustained effects on morphology, physiology, and behavior. Exposure to elevated levels of stress hormones (glucocorticoids, GCs) during development is one such condition that can have long‐term effects on animal phenotype. Many of the phenotypic effects of GC exposure during development (developmental stress) appear negative. However, there is increasing evidence that developmental stress can induce adaptive phenotypic changes. This hypothesis can be tested by examining the effect of developmental stress on fitness‐related traits. In birds, flight performance is an ideal metric to assess the fitness consequences of developmental stress. As fledglings, mastering takeoff is crucial to avoid bodily damage and escape predation. As adults, takeoff can contribute to mating and foraging success as well as escape and, thus, can affect both reproductive success and survival. We examined the effects of developmental stress on flight performance across life‐history stages in zebra finches (Taeniopygia guttata). Specifically, we examined the effects of oral administration of corticosterone (CORT, the dominant avian glucocorticoid) during development on ground‐reaction forces and velocity during takeoff. Additionally, we tested for associations between flight performance and reproductive success in adult male zebra finches. Developmental stress had no effect on flight performance at all ages. In contrast, brood size (an unmanipulated variable) had sustained, negative effects on takeoff performance across life‐history stages with birds from small broods performing better than birds from large broods. Flight performance at 100 days posthatching predicted future reproductive success in males; the best fliers had significantly higher reproductive success. Our results demonstrate that some environmental factors experienced during development (e.g. clutch size) have stronger, more sustained effects than others (e.g. GC exposure). Additionally, our data provide the first link between flight performance and a direct measure of reproductive success.  相似文献   

11.
It is increasingly recognized that hormetic environmental priming of stress responses can improve resilience to later life stress exposure. However, such phenotypic adjustments may be costly, particularly if the subsequent environment does not match that to which the adjustment was made. Here, we show that hormetic priming to mild heat stress in early life increases survival only when heat stress is again experienced in adulthood; it reduces survival if the stressor is not encountered again. That such costs can occur explains both why the stress response system is not maintained in an upregulated state and why the hormetic adjustment of responses has evolved.  相似文献   

12.
Higher corticosterone (CORT) responses to acute stress have previously been reported in quail selected for short (STI) duration of tonic immobility (TI) than for long TI (LTI), although behavioral studies indicated that LTI quail were more fearful. To investigate adrenal and pituitary function in these quail lines and their possible involvement in the differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity, we measured CORT responses to adrenocorticotropin (1-24 ACTH), corticotropin-releasing factor (CRF), and arginine vasotocin (AVT) after characterizing the nucleotide acid sequences of these peptides in quail. Although maximum adrenal responses, assessed by ACTH challenge, were higher in STI quail, adrenal sensitivity was comparable for the two genotypes. It is therefore unlikely that differences in HPA axis reactivity involved the adrenal level. AVT and ACTH induced comparable CORT responses in both genotypes, whereas those induced by CRF were much lower. AVT is thus more potent than CRF in quail, but the respective maximum pituitary capacity of both genotypes to secrete ACTH was similar, and it is doubtful that the AVT pathway is involved in the difference in HPA axis reactivity between genotypes. On the other hand, the higher CORT responses induced by CRF in STI quail suggest that CRF might be involved in the differences in HPA axis reactivity between LTI and STI genotypes.  相似文献   

13.
Vertebrates respond to unpredictable noxious environmental stimuli by increasing secretion of glucocorticoids (CORT). Although this hormonal stress response is adaptive, high levels of CORT may induce significant costs if stressful situations are frequent. Thus, alternative coping mechanisms that help buffer individuals against environmental stressors may be selected for when the costs of CORT levels are elevated. By allowing individuals to identify, anticipate and cope with the stressful circumstances, cognition may enable stress-specific behavioural coping. Although there is evidence that behavioural responses allow animals to cope with stressful situations, it is unclear whether or not cognition reduces investment in the neuroendocrine stress response. Here, we report that in birds, species with larger brains relative to their body size show lower baseline and peak CORT levels than species with smaller brains. This relationship is consistent across life-history stages, and cannot be accounted for by differences in life history and geographical latitude. Because a large brain is a major feature of birds that base their lifetime in learning new things, our results support the hypothesis that enhanced cognition represents a general alternative to the neuroendocrine stress response.  相似文献   

14.
Variation in response styles in the hypothalamic-pituitary-adrenal (HPA) axis are known to be predictors of short- and long-term health outcomes. The nature of HPA responses to stressors changes with developmental stage, and some components of the stress response exhibit long-term individual consistency (i.e., are trait-like) while others are transient or variable (i.e., state-like). Here we evaluated the response of marmoset monkeys (Callithrix geoffroyi) to a standardized social stressor (social separation and exposure to a novel environment) at three different stages of development: juvenile, subadult, and young adult. We monitored levels of urinary cortisol (CORT), and derived multiple measures of HPA activity: Baseline CORT, CORT reactivity, CORT Area Under the Curve (AUC), and CORT regulation. Juvenile marmosets exhibited the most dramatic stress response, had higher AUCs, and tended to show poorer regulation. While baseline CORT and CORT regulation were not consistent within an individual across age, CORT reactivity and measures of AUC were highly correlated across time; i.e., individuals with high stress reactivity and AUC as juveniles also had high measures as subadults and adults, and vice-versa. Marmoset co-twins did not exhibit similar patterns of stress reactivity. These data suggest that regardless of the source of variation in stress response styles in marmosets, individually-distinctive patterns are established by six months of age, and persist for at least a year throughout different phases of marmoset life history.  相似文献   

15.
In nuclei of sea urchin embryos, marked increase in ADP-ribosyltransferase activity followed by its decrease occurrs in the pre-hatching and post-hatching periods with peaks of activity at the morula and gastrula stages. Increase in its activity was blocked by cycloheximide in the pre- and post-hatching periods and by actinomycin D only in the post-hatching period. Embryo wall cells (ectoderm cells) isolated from gastrulae exhibited markedly higher activity of this enzyme than archenteron cells and mesenchyme cells. Probably, the increase in the activity of this enzyme in the post-hatching period results from expression of the gene for this enzyme mainly in ectoderm cells. In the post-hatching period, the activity increased more in animalized embryos than in normal ones, and increased little in vegetalized embryos. 3-Aminobenzamide (3-ABA), as well as luminol and nicotinamide, inhibited formation of ectoderm structures more than that of endoderm structures, such as the archenteron, in normal and animalized embryos, but had no appreciable effect on morphogenesis in vegetalized embryos. The reaction catalyzed by ADP-ribosyltransferase probably contributes to ectoderm cell differentiation. Treatment of embryos with 3-ABA in the pre-hatching period had little inhibitory effect on the morphogenesis in the post-hatching period, though it caused death of many embryos.  相似文献   

16.
Exposure to fearful situations elicits behavioral and Hypothalamic–Pituitary–Adrenal (HPA) axis responses characteristic of the coping response of individual animals to counteract environmental challenges. The aim of this study was to investigate behavioral and corticotropic responses concomitantly following prolonged or repeated restraint stress by placing two genotypes of Japanese quail divergently selected for long (LTI) or short (STI) duration of tonic immobility (TI) in a crush cage. In our study, STI quail exhibited higher corticosterone (CORT) levels than LTI quail in response to prolonged restraint. STI quail struggled sooner and much more than LTI quail, and struggling behavior in STI quail progressively decreased during the course of restraint whereas LTI quail displayed very little struggling behavior in the crush cage. LTI quail are thus more likely to adopt a passive behavior coping strategy upon exposure to threat whereas STI quail behave more as active copers. The corticosterone responses shown by LTI and STI quail under restraint stress suggest that adrenocortical correlates of coping behavior in these genotypes of quail may be different from the coping styles previously described in other species. Repeated restraint slightly decreased CORT responses to stress in all experimental groups, but more markedly in male STI quail, whereas adrenal sensitivity and maximum adrenal corticosterone response capacity did not change in any group. On the other hand, neither behavioral habituation nor sensitization processes occurred in the context of repeated restraint in female and male LTI quail and female STI quail, whereas the decreases observed in some behavioral responses were interpreted to be the result of a habituation process in male STI quail.  相似文献   

17.
《Hormones and behavior》2009,55(5):645-653
Exposure to fearful situations elicits behavioral and Hypothalamic–Pituitary–Adrenal (HPA) axis responses characteristic of the coping response of individual animals to counteract environmental challenges. The aim of this study was to investigate behavioral and corticotropic responses concomitantly following prolonged or repeated restraint stress by placing two genotypes of Japanese quail divergently selected for long (LTI) or short (STI) duration of tonic immobility (TI) in a crush cage. In our study, STI quail exhibited higher corticosterone (CORT) levels than LTI quail in response to prolonged restraint. STI quail struggled sooner and much more than LTI quail, and struggling behavior in STI quail progressively decreased during the course of restraint whereas LTI quail displayed very little struggling behavior in the crush cage. LTI quail are thus more likely to adopt a passive behavior coping strategy upon exposure to threat whereas STI quail behave more as active copers. The corticosterone responses shown by LTI and STI quail under restraint stress suggest that adrenocortical correlates of coping behavior in these genotypes of quail may be different from the coping styles previously described in other species. Repeated restraint slightly decreased CORT responses to stress in all experimental groups, but more markedly in male STI quail, whereas adrenal sensitivity and maximum adrenal corticosterone response capacity did not change in any group. On the other hand, neither behavioral habituation nor sensitization processes occurred in the context of repeated restraint in female and male LTI quail and female STI quail, whereas the decreases observed in some behavioral responses were interpreted to be the result of a habituation process in male STI quail.  相似文献   

18.
Triglycerides in the embryos of the sea urchin, Anthocidaris crassispina , analyzed by gas-liquid chromatography, distributed in a range of carbon numbers between 42 and 58 in the sum of three fatty acid residues. During the development until gastrulation, the levels of triglycerides with 48, 56 and 58 carbon numbers decreased at constant rates and the levels of the others decreased at specific stages different with one another, respectively. Thereafter, the amounts of all triglycerides decreased simultaneously. The amount of oxygen consumed in the embryos is enough for the oxidation of mobilized triglycerides during post-hatching period but is not during pre-hatching period. The levels of neutral glycerides increased gradually during pre-hatching period and thereafter decreased. The fatty acid level also increased during pre-hatching and post-hatching period. These suggest that the cleavage of triglycerides and the oxidation of their cleavage-products occur during whole span of early development. During pre-hatching period, the break down of triglycerides is probably higher in its rate than the rate of their oxidation, resulting in the increase in the levels of neutral glycerides, as well as fatty acids.  相似文献   

19.
Allocating resources to growth or to reproduction is a fundamental tradeoff in evolutionary life history theory. In environments with unpredictable food resources, natural selection is expected to favor increased allocation to reproduction. Although effects of selection are realized only across generations, short-term changes in food predictability might influence intra-generational tradeoffs in resource allocation. We assessed the ability of fathead minnows, Pimephales promelas, to adjust allocation to growth and reproduction in response to predictable, unpredictable, and switched feeding schedules. Fish in the switched treatments were changed from unpredictable to predictable feeding schedules just after reaching sexual maturity. Egg production did not differ significantly among treatments despite the fact that females on the unpredictable and switched feeding schedules grew more slowly than those on the predictable schedule. Switched males were heavier and had proportionally larger testes than males in predictable and unpredictable treatments. Increased allocation to reproduction or growth by fish on unpredictable and switched feeding schedules was associated with changes in gut length relative to body mass. Both sexes showed a remarkable degree of phenotypic plasticity in response to resource availability and sex differences in allocation patterns were consistent with adaptive responses in the context of the fathead mating system.  相似文献   

20.
The circadian system develops and changes in a gradual and programmed process over the lifespan. Early in life, maternal care represents an important zeitgeber and thus contributes to the development of circadian rhythmicity. Exposure to early life stress may affect circadian processes and induce a latent circadian disturbance evident after exposure to later life stress. Disturbance of the normal regulation of circadian rhythmicity is surmised to be an etiological factor in depression. We used postnatal maternal separation in rats to investigate how the early life environment might modify the circadian response to later life unpredictable and chronic stress. During postnatal days 2–14, male Wistar rats (n?=?8 per group) were daily separated from their mothers for a period of either 180?min (long maternal separation; LMS) or 10?min (brief maternal separation; BMS). In adulthood, rats were exposed to chronic mild stress (CMS) for 4 weeks. Body temperature, locomotor activity and heart rate were measured and compared before and after CMS exposure. LMS offspring showed a delayed body temperature acrophase compared to BMS offspring. Otherwise, adult LMS and BMS offspring demonstrated similar diurnal rhythms of body temperature, locomotor activity and heart rate. Exposure to CMS provoked a stronger and longer lasting hypothermia in LMS rats than in BMS rats. The thermoregulatory response appears to be moderated by maternal care following reunion, an observation made in the LMS group only. The results show that early life stress (LMS) in an early developmental stage induced a thermoregulatory disturbance evident upon exposure to unpredictable adult life stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号