首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were done to compare the effects of neonatal exposure to testosterone and its major metabolites, dihydrotestosterone (DHT) and estradiol (E2), on the development of sex differences in open-field behavior in the rat. In Experiment 1 female rats administered either testosterone propionate (TP), DHT, or estradiol benzoate (EB) were found as adults to have low activity scores, more typical of adult males, when compared to the high scores of oil-treated females. In Experiment 2 the adult open-field behavior of female rats treated neonatally with testosterone or the metabolites was compared to that of male rats treated from Day 1 to 10 of life with the aromatizing enzyme inhibitor, androst-1,4,6-triene-3,17-dione (ATD). These same animals were later tested for lordotic behavior after gonadectomy and priming with EB and progesterone. All male animals and female animals exposed neonatally to testosterone or to either of the metabolites had suppressed open-field activity scores compared to oil-treated females. However, the lordotic behavior of females exposed to DHT and of males exposed to ATD was not defeminized and was comparable to that of oil-treated females. These observations were discussed in terms of a role for the androgenic actions of testosterone in establishing sex differences in nonreproductive behavior in the rat.  相似文献   

2.
The effects of exogenous hormone treatment on the expression of cytochromes P450 2C7 and P450 2C11 were studied in neonatally gonadectomized and sham-operated male and female rats. Hepatic levels of cytochrome P450 2C7 were found to be two- to threefold higher in intact adult female versus male rats. Neonatal gonadectomy resulted in a reversal of the relative cytochrome P450 2C7 levels in male and female animals at maturity. Expression of this isozyme was restored in ovariectomized females by estradiol treatment. Furthermore, neonatal and/or pubertal administration of estradiol to intact male rats induced cytochrome P450 2C7 to adult female levels. On the other hand, administration of testosterone at all times examined had no effect in intact female rats, but decreased cytochrome P450 2C7 to normal levels in neonatally castrated males treated during adulthood. Neonatal testosterone treatment also increased hepatic cytochrome P450 2C7 content in both ovariectomized females and intact males. These results indicate that estrogen is required for full expression of cytochrome P450 2C7 while the effect of testosterone is ambiguous. In comparison, neonatal gonadectomy of male rats abolished the adult expression of cytochrome P450 2C11. Normal levels were restored only by treatment with testosterone during adulthood. Neonatal testosterone treatment did not induce cytochrome P450 2C11 levels in gonadectomized rats of either sex. In contrast, neonatal estrogen treatment suppressed cytochrome P450 2C11 expression in intact adult male rats to the same extent as neonatal castration. These results indicate that androgen exposure during the adult, and not the neonatal, phase is essential for full expression of cytochrome P450 2C11.  相似文献   

3.
The ability of gonadal steroid hormones to influence tonic follicle-stimulating hormone (FSH) secretion was investigated in Syrian hamsters. In Experiment 1, males were castrated as adults, and administered testosterone in 20-, 30-, 40-, and 50-mm silastic capsules (s.c.) at 67, 74, 81, and 88 days, respectively. Circulating FSH was reduced by testosterone in a dose-dependent manner. A similar FSH response to testosterone in adulthood was evident in neonatally androgenized hamsters given testosterone proprionate (TP) on Days 0 and 1 of life. By contrast, the absence of gonadal androgens during the neonatal period (females ovariectomized at 60 days of age and males orchidectomized at birth) resulted in only a partial suppression of circulating FSH by even the highest dose of testosterone during adulthood. Treatment with estradiol benzoate at birth failed to produce a masculine response to androgen in adulthood. In Experiment 2, using a similar protocol, the nonaromatizable androgen, dihydrotestosterone, produced a dose-dependent suppression in serum FSH in males castrated in adulthood (30-, 60-, 90-mm capsules). However, dihydrotestosterone failed to alter the hypersecretion of FSH produced by orchidectomy at birth in males or in females ovariectomized at 60 days of age and treated neonatally with either vehicle or TP. In Experiment 3, treatment with estradiol (10-, 20-, 30-mm capsules) decreased serum FSH in gonadectomized hamsters in a dose-dependent manner; males and females treated neonatally with TP were more responsive to estradiol as adults compared to neonatally orchidectomized males or females treated with vehicle at birth.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0–P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15–P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior.  相似文献   

5.
The neuropeptide cholecystokinin (CCK) inhibits lordosis behavior when infused into the ventromedial nucleus of the hypothalamus (VMN) of female rats and has no effect when infused into the VMN of male rats. To test whether this sex difference develops under the control of perinatal steroids, male rats were castrated or given sham surgeries within 3 h of birth and female rats were injected with either 0 or 100 micrograms testosterone propionate on postnatal day 5. As adults, these rats were castrated as necessary, implanted with unilateral cannulae directed at the VMN, and tested for their ability to display female sexual behavior and to respond to CCK. Neonatal castration of males prevented defeminization of this response. When treated with 5 micrograms estradiol benzoate (EB), neonatally castrated males showed both lordosis behavior and a profound inhibition of that behavior after infusions of CCK. Neonatally castrated males did not display lordosis behavior when treated with 2 micrograms EB. Control males showed no lordosis behavior and, therefore, no response to CCK. Both doses of EB induced lordosis behavior in neonatally androgenized females. Significantly, these neonatally androgenized females were less responsive to CCK's inhibition of lordosis and were also anovulatory. These results imply that androgens alter the development of CCK responsive circuits as well as defeminize cyclic gonadotropin release. Levels of 125I-sCCK-8 binding in the VMN were correlated closely with an individual's ability to respond to sCCK-8. In summary, the inhibition of female sexual behavior caused by exogenously administered CCK in normal adult female rats appears to be controlled at least partially by levels of CCK receptors in the VMN and to differentiate under the control of perinatally present testosterone.  相似文献   

6.
Neonatal gonadectomy studies and hormonal replacement regimens were employed to characterize the regulation of delta 4-steroid 5 alpha-reductase, microsomal flavin-containing monooxygenase, and several forms of rat hepatic microsomal cytochrome P-450, including three that are sexually differentiated. Rats of both sexes that had been gonadectomized at birth were either untreated or were administered testosterone propionate or estradiol benzoate neonatally (subcutaneous injection on days 1 and 3 of life), postpubertally (an implant of a hormone-packed capsule at 5 weeks of age), or both neonatally and postpubertally. At the age of 10 weeks, all rats were killed, and several liver microsomal enzymes were assayed using immunochemical and catalytic techniques. Expression in the 10-week-old male and female rats of two male-specific cytochrome P-450 forms, termed P-4502c/UT-A and P-4502a/PCN-E, and their associated respective 16 alpha- and 6 beta-steroid hydroxylase activities could either be imprinted (programmed) by androgen exposure during the early neonatal period or, alternatively, could be stimulated by continuous hormone treatment after the age of 5 weeks. By contrast, hepatic expression of two female-specific enzymes, P-4502d/UT-1 and delta 4-steroid 5 alpha-reductase, was only partially dependent on estradiol; birth-gonadectomized rats expressed as much as 30-50% of the enzyme levels present in untreated adult females. Expression of both female-specific enzymes was fully suppressed upon postpubertal exposure to testosterone. In another study, birth sham-operated female rats were administered testosterone using the same regimens described above for the birth-gonadectomized rats. Although neonatal testosterone treatment alone did not affect the expression in these females of the four sex-specific enzymes examined in this study, it did enhance significantly the masculinization effected by postpubertal androgen exposure. This resulted in expression of the male-specific enzymes P-4502c/UT-A and P-4502a/PCN-E in these females at levels comparable to those found in adult males, while simultaneously suppressing the two female-specific enzymes, P-4502d/UT-I and delta 4-steroid 5 alpha-reductase, by approximately 70-75% to levels characteristic of prepubertal rats of either sex. The levels of another microsomal enzyme, flavin-containing monooxygenase, were also measured and found to be regulated by testosterone, but the ontogenic profiles and the effects of gonadectomy and hormone replacement indicated clear differences in its regulation when compared to the other male-specific enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The purpose of this study was to examine the effects of neonatally placed septal lesions (SL) in male, female, and androgenized female rats on reproductive behavior. Animals were castrated as adults and tested for both feminine and masculine sexual behavior. After treatment with estradiol benzoate (EB) alone (2 μg daily for 3 days), only the females with SL which had not been given testosterone propionate (TP) neonatally showed a facilitation of lordosis behavior. Following EB (2 μg for 3 days) plus 0.5 mg progesterone (P), both the lesioned and the sham-operated female groups showed an increase in the display of lordosis in either hormonal condition. All animals were given a pretest for masculine sexual behavior and tested on Days 4, 7, 11, and 15 of daily TP treatment (150 μg/day). There was no effect of the neonatally placed SL on masculine sexual behavior in female rats or in female rats androgenized with 30 μg TP. However, lesioned females treated neonatally with 1 mg TP showed a marginal enhancement of masculine sexual behavior. Male rats given SL neonatally showed a marked enhancement of masculine sexual behavior compared to that of controls. These results suggest that, depending on the neonatal hormone environment, SL selectively increase behavioral sensitivity to hormones. Although neonatally lesioned females show behavioral responses similar to females given SL as adults, male rats given SL neonatally are unique in that they show enhanced masculine sexual behavior whereas males lesioned as adults do not.  相似文献   

8.
The mechanism underlying the gender-based difference in circulating leptin levels (females>males) is still uncertain, because the difference persists even after adjustment for fat mass and sex steroid concentrations. In this study, we tested the possibility that the neonatal sex steroid milieu, which is critical for the sexual differentiation of the brain, may permanently affect leptin secretion in rats of both sexes. Male rats were neonatally castrated (NC), and females were neonatally androgenized (NA) by testosterone (T). Two subsets of the NC males were given T on postnatal day 1 or 29. Appropriate controls for all these groups were prepared. The animals were sacrificed on postnatal day 57, and at this age, the percent body fat was similar among all the male and female groups. NC males had a two-fold, significantly higher level of leptin than intact males. This hyperleptinemia induced by NC was prevented by T when it was given neonatally, but not on the day 29. By contrast, NA for females was without effect on leptin titers in later life. These results suggest that neonatal T in male rats may, at least in part, mediate the sex-related difference in leptin secretion that becomes apparent in later life. However, as intact females still had significantly higher leptin titers than NC males, it is very likely that additional factors may also be responsible for the sexually dimorphic leptin secretion in rats.  相似文献   

9.
The effect of gonadectomy and sex-steroid hormones treatment on functional interhemispheric asymmetry to the reaction of pain cry avoidance of another species (emotional reactions) and motor and exploratory activity of open-field behavior in Wistar rats of 3 months old has been investigated. A spreading depression technique for hemisphere inactivation has been used. The hemispheric asymmetry of the reactions in intact rats was characterized by sex dimorphism; the left hemisphere dominated to a great extent in males than in females under the control of emotional reactions; in motor and exploratory activity in open-field behavior of rats the left hemisphere dominated in males and the right one--in female. In both sexes the neonatal gonadectomy levelled the interhemispheric differences in reactions under investigation. The following treatment of females with estradiol and males with testosterone didn't restore the asymmetry. After the castration at the age of 3 months the correlation between the size and direction of interhemispheric differences became reverse. The treatment of females with testosterone and males with estradiol both castrated in adulthood restored the interhemispheric asymmetry in males and had no effect in females. The treatment of intact rats with hormones of opposite sex led to the enhancement of left hemisphere dominance in motor and exploratory activity in males and levelled the asymmetry in females. It has been shown that in adult rats sex-steroids effect predominantly the right hemisphere.  相似文献   

10.
The aromatase of the preoptic area is significantly more active in males than in females. This sex dimorphism in enzyme activity is still found in birds that have been gonadectomized and treated with a same dose of testosterone. This suggests that the sex difference is not the result of a differential activation by the adult hormonal environment but rather is organized neonatally by steroid hormones. As the central aromatization of testosterone is a limiting step in the activation of copulatory behavior by testosterone, the lower aromatase activity in the preoptic area of females might be responsible, at least in part, for their lower sensitivity to the activating effects of testosterone on behavior. Three experiments were carried out to determine whether early manipulations of the hormonal environment, which are known to differentiate sexual behavior, also affect in a permanent way the aromatase activity in the preoptic area. Injection of estradiol benzoate into male embryos on day 9 of incubation decreased the preoptic aromatase activity in parallel to its demasculinizing effect on behavior. Unexpectedly the same treatment tended to increase enzyme activity in females so that the physiological relevance of the observed enzymatic change remains questionable. In two independent experiments, we confirmed that neonatal ovariectomy of female quail interferes with their behavioral differentiation. Females gonadectomized at 4 days post-hatch showed significantly more male-type sexual behavior as adult in response to testosterone than females gonadectomized at the age of 5 weeks. These experiments also confirmed that the preoptic aromatase activity is higher in males than in females but no evidence for an effect of the age of gonadectomy on the enzyme activity could be obtained. The sex difference and experimental modifications observed in the aromatase activity of the preoptic area were not seen in the posterior hypothalamus demonstrating that these effects are specific. The mechanisms controlling the sex difference in aromatase activity are discussed. The difference might be organized by the action of embryonic steroids as suggested by the changes observed in males injected with estradiol benzoate in egg. Alternatively, activational mechanisms cannot be ruled out at present. In one experiment, the activity of the preoptic aromatase was positively correlated with the sexual activity of the birds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The actions of steroid hormones on brain and behavior are classically divided into organizational effects that are permanent and occur early in development and activational effects that are temporary and occur throughout life. Here, we test the hypothesis that in an induced ovulator, testosterone defeminizes only those neural tissues that rely on synergistic interactions of estrogen and progesterone for normal function in adulthood. Female voles,Microtus pinetorum,injected with testosterone (T) or oil neonatally were paired with males for an 8-week period. During the pairing, androgenized and oil-treated females spent a similar amount of time investigating the caudal and rostral regions of the males. Males spent significantly less time investigating the caudal and rostral regions of androgenized females. Androgenized females mounted males, did not exhibit lordosis, and were less likely to be mounted by males. Moreover, none of the 10 androgenized females gave birth, whereas 8 of 9 control females gave birth. Androgenized females were also not capable of being stimulated into reproductive condition by males. Injection of 0.5 μg of estradiol benzoate for 4 consecutive days resulted in reduced uterine hypertrophy in androgenized females. These results support the original organizational–activational hypothesis by showing that neonatal androgenization defeminizes and masculinizes female pine voles.  相似文献   

12.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone-filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system.  相似文献   

13.
The central component of the medial preoptic nucleus (MPNc) of the rat has served as an excellent model of sexual differentiation. The MPNc is larger in adult males than in females, and its development is regulated by perinatal gonadal hormones. Although testosterone (T) and its metabolite estradiol (E) sexually differentiate this region, the exact mechanism by which they act during development is not known. There is a dramatic sex difference in the expression of progesterone receptors (PR) in the MPN during development; perinatal males express higher levels of PR than females. Additionally, PR expression during this time is dependent on exposure to T. Thus, PR induction may be one mechanism by which T sexually differentiates the MPN. The present study investigated the potential role of PR in the sexual differentiation of the MPNc. Anatomical examination of PR distribution within the MPN of neonatal males revealed the presence of PR immunoreactive cells within the MPNc, suggesting a direct route of action for PR in the development of the MPNc. Additionally, we measured the effects of neonatal RU486 treatment, a progesterone and glucocorticoid receptor antagonist, on subsequent MPNc volume in neonatally T-treated females and neonatally castrated males, given T. RU486 treatment reduced the MPNc volume of T-treated females while it increased the volume in T-treated, neonatally castrated males. These results, taken together with the expression of PR in the MPNc, suggest that PR may influence the sexual differentiation of the MPNc volume.  相似文献   

14.
Immune function is better in females than in males of many vertebrate species, and this dimorphism has been attributed to the presence of immunosuppressive androgens in males. We investigated the influence of sex steroid hormones on immune function in male and female Siberian hamsters. Previous studies indicated that immune function was impaired in male and female hamsters housed under short-day photoperiods when androgen and estrogen concentrations were virtually undetectable. In experiment 1, animals were gonadally intact, gonadectomized (gx), or gx with hormone replacement. Females exhibited the expected increase in antibody production over males, independent of hormone treatment condition, whereas male and female gx animals exhibited decreased lymphocyte proliferation to the T cell mitogen, phytohemagglutinin (PHA) compared with intact animals, and this effect was reversed in gx hamsters following testosterone and estradiol treatment, respectively. In experiment 2, testosterone, dihydrotestosterone, and estradiol all enhanced cell-mediated immunity in vitro, suggesting that sex steroid hormones may be enhancing immune function through direct actions on immune cells. In experiment 3, an acute mitogen challenge of lipopolysaccharide significantly suppressed lymphocyte proliferation to PHA in intact males but not females, suggesting that males may be less reactive to a subsequent mitogenic challenge than females. Contrary to evidence in many species such as rats, mice, and humans, these data suggest that sex steroid hormones enhance immunity in both male and female Siberian hamsters.  相似文献   

15.
Studies have been made on the content of receptors of estradiol (E2) and testosterone (T) in cytoplasmic and nuclear fractions of the hypothalamus of male and female rats during neonatal development, as well as in adult females after androgenization in neonatal period and adult males castrated within 3 days of postnatal life. It was shown that both E2 and T are present in the blood serum of male and female newborn rats. In female hypothalamus, only E2 receptors were found, whereas in males both types of receptors were revealed, their content being higher than in females. In adult animals subjected to changes in the level of sex hormones in the blood during early neonatal period, changes in concentration of the receptors in the hypothalamic centres of regulation of tonic and cyclic secretion of gonadotropins were found. The data obtained presumably reveal the role of receptors of sex hormones in sex differentiation of the brain.  相似文献   

16.
In adulthood, male rats express higher levels of arginine vasopressin (AVP) mRNA in the bed nucleus of the stria terminalis (BST) than do female rats. We tested whether this sex difference is primarily due to differences in neonatal levels of testosterone. Male and female rats were gonadectomized on the day of birth and treated with testosterone propionate (TP) or vehicle on postnatal days 1, 3, and 5 (P1, P3, and P5). Three months later, all rats were implanted with testosterone‐filled capsules. Two weeks later, brains were processed for in situ hybridization to detect AVP mRNA. We found that neonatal TP treatment significantly increased the number of vasopressinergic cells in the BST over control injections. We then sought to determine the effects of testosterone metabolites, estradiol and dihydrotestosterone, given alone or in combination, on AVP expression in the BST. Rat pups were treated as described above, except that instead of testosterone, estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), a combination of EB and DHTP (EB+DHTP), or vehicle was injected neonatally. Neonatal treatment with either EB or EB+DHTP increased the number of vasopressinergic cells in the BST over that of DHTP or oil treatment. However, treatment with DHTP also significantly increased the number of vasopressinergic cells over that of oil treatment. Hence, in addition to bolstering evidence that estradiol is the more potent metabolite of testosterone in causing sexual differentiation of the brain, these data provide the first example of a masculinizing effect of a nonaromatizable androgen on a sexually dimorphic neuropeptide system. © 2003 Wiley Periodicals, Inc. J Neurobiol 54: 502–510, 2003  相似文献   

17.
The role of neonatal testosterone in the development of copulatory behavior was examined in an insectivore, the musk shrew (Suncus murinus). Female musk shrews were treated with testosterone propionate (TP) for the first 5 days of life and then tested in adulthood for either female or male-like copulatory behavior. Early TP had a masculinizing effect; neonatally treated animals mounted a stimulus female more frequently, and with shorter latencies, in response to adult testosterone treatment than did control females. Neonatally androgenized females also showed deficits in female sexual behavior; few received ejaculations from stud males. This difference was likely caused by increased aggression exhibited by the neonatally TP-treated females toward males. In turn, female aggression decreased efficiency of male partners' intromission attempts. Early TP treatments also caused structural abnormalities in the ovaries, but did not effect their capacity to ovulate in response to either gonadotropin-releasing hormone or human chorionic gonadotropin injection. In sum, exposure to TP during development augmented display of male-like behavior in females and had subtle deleterious effects on expression of feminine behavior.  相似文献   

18.
We compared the effects of neonatal or adult castration (7 days) and 2 or 7 days of estrogen treatment on the concentrations of estradiol cystolic (ERc) and nuclear (ERn), and progestin cytosolic receptors (PRc) in the hypothalamus, amygdala and pituitaries of adult rats. Two days of estradiol (E2) treatment greatly increased ERn levels, but no further concentration changes occurred by Day 7 in any of the tissues. Long- and short-term castrated males and females had comparable ERn concentrations on Day 2 versus Day 7. Tissue ERn levels were significantly lower in short-term males compared to short-term females or neonatally castrated males and females. In a second study, ERn levels were compared in E2-treated short-term castrated males and females on Day 2. A sex difference was observed, with females having greater ERn levels in most areas. Estrogen significantly increased PRc levels in pituitary (PIT) and hypothalamus, and these levels were comparable in Day 2 and Day 7 animals. Thus, the ability of estrogen to induce PRc synthesis is somewhat refractory in long-term castrated rats.  相似文献   

19.
The sexual interactions of Saguinus fuscicollis males castrated as neonates, at 37 days of age, or prepubertally with adult intact females were studied. Prepubertally castrated males were observed while receiving testosterone, and while being treated with saline. Males castrated neonatally or at 37 days of age were observed while receiving testosterone. Neonatal castrates had previously been studied without hormone treatment and therefore no control condition was included for these animals. Prepubertally castrated males showed Mounts, Mounts with Thrusts, and Sexual Tongue Flicking when treated with saline only. In three of the four males, all measures of sexual behavior increased with testosterone treatment. Neonatally castrated males had failed to display any mounting or thrusting without testosterone treatment during a previous study. During the present study, three of the four males did not respond to testosterone treatment with sexual behavior. The fourth male and one male castrated at 37 days of age displayed some sexual behavior. These results suggest that most neonatally castrated males are not able to respond to testosterone with the activation of copulatory behavior. The findings are consistent with the hypothesis that in callitrichids the sensitive period for behavioral differentiation is shifted into neonatal life. However, some neonatally castrated males show a weak response to testosterone. This may reflect an extended and perhaps partially prenatal period of sensitivity.  相似文献   

20.
The results of six experiments designed to investigate the hormonal basis of the sex differences in the occurrence of social play in the rat are reported. From the time of weaning animals were housed in mixed-sex, peer groups of six, composed of some treated and some untreated animals. Observations were made of the animals in these groups each day between Days 26 and 40 of life in Experiments 1, 3–6 and between Days 31 and 40 in Experiment 2. In Experiment 1 it was found that males castrated on Day 1 of life engaged in less social play than did intact males, and did not differ from normal females. In Experiment 2, castration carried out at 23 days of age had no effects on the frequency with which males engaged in social play. In Experiment 3, it was found that neonatal ovariectomy had no effect on the frequency with which female pups engaged in social play. In Experiment 4, females treated on Days 1 and 2 of life with either 250 μg of testosterone propionate or 250 μg of dihydrotestosterone engaged in social play at rates comparable to those of normal males, whereas treatment with 5 μg of estradiol benzoate had no such effect. In Experiments 5 and 6 it was found that neither the reduction of testosterone-derived estradiol (by implants of the aromatization blocker, androst-1,4,6-triene-3,17-dione) nor that of testosterone-derived dihydrotestosterone (by implants of the 5α-reductase blocker, testosterone 17β-carboxylic acid) during the early neonatal period (Days 1 to 10 of life) changed the frequency of social play in intact males. The results of these experiments indicate that the sex difference in the social play of prepubescent rats is dependent on the neonatal exposure to testosterone or to its 5α-reduced metabolite, dihydrotestosterone. The reduction of testosterone to dihydrotestosterone, however, would not appear to be a necessary step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号