首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon can stimulate gluconeogenesis from 2 mM lactate nearly 4-fold in isolated liver cells from fed rats; exogenous cyclic adenosine 3':5'-monophosphate (cyclic AMP) is equally effective, but epinephrine can stimulate only 1.5-fold. Half-maximal effects are obtained with glucagon at 0.3 nM, cyclic AMP at 30 muM and epinephrine at 0.2 muM. Insulin reduces by 50% the stimulation by suboptimal concentrations of glucagon (0.5 nM). A half-maximal effect is obtained with 0.3 nM insulin (45 microunits/ml). Glucagon in the presence of theophylline (1 mM) causes a rapid rise and subsequent fall in intracellular cyclic AMP with a peak between 3 and 6 min. Some of the fall can be accounted for by loss of nucleotide into the medium. This efflux is suppressed by probenecid, suggesting the presence of a membrane transport mechanism for the cyclic nucleotide. Glucagon can raise intracellular cyclic AMP about 30-fold; a half-maximal effect is obtained with 1.5 nM hormone. Epinephrine (plus theophylline, 1 mM) can raise intracellular cyclic AMP about 2-fold; the peak elevation is reached in less than 1 min and declines during the next 15 min to near the basal level. Insulin (10 nM) does not lower the basal level of cyclic AMP within the hepatocyte, but suppresses by about 50% the rise in intracellular and total cyclic AMP caused by exposure to an intermediate concentration of glucagon. No inhibition of adenylate cyclase by insulin can be shown. Basal gluconeogenesis is not significantly depressed by calcium deficiency but stimulation by glucagon is reduced by 50%. Calcium deficiency does not reduce accumulation of cyclic AMP in response to glucagon but diminishes stimulation of gluconeogenesis by exogenous cyclic AMP. Glucagon has a rapid stimulatory effect on the flux of 45Ca2+ from medium to tissue.  相似文献   

2.
Transitional epithelium lining rabbit urinary bladders was isolated and studied in vitro. The homogeneity of the isolated epithelium was demonstrated by light and electron microscopical monitoring as well as cell culture studies. Transitional epithelium responded to epinephrine and prostaglandin E1 (PGE1) in the presence of 2mM 1-methyl, 3-isobutylxanthine (MIX) with increases in intracellular levels of cyclic adenosine 3':5'-monophosphate (cyclic AMP). Corticotropin, aldosterone, insulin, parathyroid hormone and vasopressin were slightly but significantly stimulatory under similar conditions. Glucagon and oxytocin were not stimulatory at the concentrations tested. The effects of epinephrine and PGE1 were potentiated by 2mM MIX 20-fold or greater. The cells were slightly more sensitive to PGE1 then to epinephrine. The prostaglandin produced a noticeable response at about 10nM, while effects of epinephrine were discernible at 0.1muM. Maximal responses to both effectors were seen at about 10muM. The action of 10muM epinephrine, but not 10muM PGE1, was completely abolished by 0.1mM propranolol. Responses to combinations of epinephrine and PGE1 were additive. Cyclic AMP accumulated in the incubation medium of transitional epithelial cells exposed to epinephrine, PGE1, MIX, or combinations of the agonists. The appearance of cyclic AMP in the medium was slow compared to the rate of intracellular accumulation, but reached significant levels following prolonged stimulation.  相似文献   

3.
In liver cells isolated from fed female rats, glucagon (290nM) increased adenosine 3':5'-monophosphate (cyclic AMP) content and decreased cyclic AMP binding 30 s after addition of hormones. Both returned to control values after 10 min. Glucagon also stimulated cyclic AMP-independent protein kinase activity at 30 s and decreased protein kinase activity assayed in the presence of 2 muM cyclic AMP at 1 min. Glucagon increased the levels of glycogen phosphorylase a, but there was no change in total glycogen phosphorylase activity. Glucagon increased glycogen phosphorylase a at concentrations considerably less than those required to affect cyclic AMP and protein kinase. The phosphodiesterase inhibitor, 1-methyl-3-isobutyl xanthine, potentiated the action of glucagon on all variables, but did not increase the maximuM activation of glycogen phosphorylase. Epinephrine (1muM) decreased cyclic AMP binding and increased glycogen phosphorylase a after a 1-min incubation with cells. Although 0.1 muM epinephrine stimulated phosphorylase a, a concentration of 10 muM was required to increase protein kinase activity. 1-Methyl-3-isobutyl xanthine (0.1 mM) potentiated the action of epinephrine on cyclic AMP and protein kinase. (-)-Propranolol (10muM) completely abolished the changes in cyclic AMP binding and protein kinase due to epinephrine (1muM) in the presence of 0.1mM 1-methyl-3-isobutyl xanthine, yet inhibited the increase in phosphorylase a by only 14 per cent. Phenylephrine (0.1muM) increased glycogen phosphorylase a, although concentrations as great as 10 muM failed to affect cyclic AMP binding or protein kinase in the absence of phosphodiesterase inhibitor. Isoproterenol (0.1muM) stimulated phosphorylase and decreased cyclic AMP binding, but only a concentration of 10muM increased protein kinase. 1-Methyl-3-isobutyl xanthine potentiated the action of isoproterenol on cyclic AMP binding and protein kinase, and propranolol reduced the augmentation of glucose release and glycogen phosphorylase activity due to isoproterenol. These data indicate that both alpha- and beta-adrenergic agents are capable of stimulating glycogenolysis and glycogen phosphorylase a in isolated rat liver cells. Low concentrations of glucagon and beta-adrenergic agonists stimulate glycogen phosphorylase without any detectable increase in cyclic AMP or protein kinase activity. The effects of alpha-adrenergic agents appear to be completely independent of changes in cyclic AMP protein kinase activity.  相似文献   

4.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

5.
1. Epinephrine-induced increase in rat liver cyclic AMP in vivo was potentiated when the circulating insulin was suppressed by injection of anti-insulin serum or by induction of diabetes. Consequently, phosphorylase was activated, glycogen synthetase was inactivated and glycogen accumulation induced by glucose load was prevented by epinephrine in the insulin-deficient rats to a much larger extent than in normal rats. 2. Insulin lack was effective in potentiating epinephrine-induced increase in liver and muscule cyclic AMP even after the treatment of rats with theophylline; the potentiation could not be solely accounted for by the inhibition of cyclic AMP phosphodiesterase. Thus, it is likely that insulin lack enhaces epinephrine activation of adenylate cyclase. 3. Unlike epinephrine, glucagon increased liver cyclic AMP to essentially the same extent whether the rat was treated with anti-insulin serum or not. 4. Based on the difference in dose-response curves between normal and insulin-deficient rats, a possibility is discussed that there are two adenylate cylase in the liver with higher and lower affinities for epinephrine and that circulating insulin blocks the high affinity enzyme selectively.  相似文献   

6.
Insulin and glucagon stimulate amino acid transport in freshly prepared suspensions of isolated rat hepatocytes. The kinetic properties of alpha-amino[1-14C]isobutyric acid (AIB) transport were investigated in isolated hepatocytes following stimulation by either hormone in vitro. In nonhormonally treated cells (i.e. basal state), saturable transport occurred mainly through a low affinity (Km approximately equal to 40 mM) component. In insulin or glucagon-treated hepatocytes, saturable transport occurred through both a low affinity component (similar to that observed in the basal state) and a high affinity (Km approximately equal to 1 mM) component. At low AIB concentrations (less than 0.5 mM), insulin and glucagon at maximally stimulating doses increased AIB uptake about 2-fold and 5-fold, respectively. The high affinity component induced by either hormone exhibited the properties of the A (alanine preferring) mediation of amino acid transport. This component required 2 to 3 h for maximal expression, and its emergence was completely prevented by cycloheximide. Half-maximal stimulation was elicited by insulin at about 3 nM and by glucagon at about 1 nM. Dibutyryl cyclic AMP mimicked the glucagon effect and was not additive to it at maximal stimulation. Maximal effects of insulin and glucagon, or insulin and dibutyryl cyclic AMP, were additive. We conclude that insulin and glucagon can modulate amino acid entry in hepatocytes through the synthesis of a high affinity transport component.  相似文献   

7.
Catecholamines increased guanosine 3':5'-monophosphate (cyclic GMP) accumulation by isolated rat liver cells. The increases in cyclic GMP due to 1.5 muM epinephrine, isoproterenol, or phenylephrine were blocked by phenoxybenzamine but not by propranolol. The possibility that cyclic GMP is involved in the glycogenolytic action of catecholamines seems unlikely since cyclic GMP accumulation is also elevated by carbachol, insulin, A23187, and to a lesser extent by glucagon. Furthermore, carbachol had little effect on glycogenolysis while insulin actually inhibited hepatic glycogenolysis. The rise in cyclic GMP due to carbachol was abolished by atropine and that due to all agents was markedly reduced by the omission of extracellular calcium. However, the glycogenolytic action of glucagon and catecholamines was only slightly inhibited by the omission of calcium. The only agent which was unable to stimulate glycogenolysis in calcium-free buffer was the divalent cation ionophore A23187. There was a drop in ATP content of liver cells during incubation in calcium-free buffer which was accompanied by an inhibition of glucagon-activated adenosine 3':5'-monophosphate (cyclic AMP) accumulation. The presence of calcium inhibited the rise in adenylate cyclase activity of lysed rat liver cells due to glucagon or isoproterenol but not that due to fluoride. These results suggest that the stimulation by catecholamines and glucagon of glycogenolysis is not mediated through cyclic GMP nor does it depend on the presence of extracellular calcium. Cyclic GMP accumulation was increased in liver cells by agents which either inhibit, have little affect, or accelerate glycogenolysis. The significance of elevations of cyclic GMP in rat liver cells remains to be established.  相似文献   

8.
The regulation of pyruvate kinase in isolated hepatocytes from fasted rats was studied where the intracellular level of fructose 1,6-bisphosphate was elevated 5-fold by the addition of 5 mM dihydroxyacetone. In this case, flux through pyruvate kinase was increased. The increase in flux correlated with an elevation in fructose bisphosphate levels but not with P-enolpyruvate levels which were unchanged. Pyruvate kinase was activated and its affinity for P-enolpyruvate was increased 7-fold in hepatocyte homogenates. Precipitation of the enzyme from homogenates with ammonium sulfate removed fructose 1,6-bisphosphate and activation was no longer observed. These results indicate that flux through and activity of pyruvate kinase can be controlled by the intracellular level of fructose 1,6-bisphosphate. The effect of elevated fructose 1,6-bisphosphate levels on the ability of glucagon to inactivate pyruvate kinase was also studied where only covalent enzyme modification is observed. Inactivation by maximally effective hormone concentrations was unaffected by elevated levels of fructose 1,6-bisphosphate, but the half-maximally effective concentration was increased from 0.3 to 0.8 nM. Activation of the cyclic AMP-dependent protein kinase by 0.3 nM glucagon was unaffected, but the initial rate of pyruvate kinase inactivation was suppressed. These results suggest that alterations in the level of fructose 1,6-bisphosphate can affect the ability of physiological concentrations of glucagon to inactivate pyruvate kinase by opposing phosphorylation of the enzyme. Consistent with this view was the finding that physiological concentrations of fructose 1,6-bisphosphate inhibited in vitro phosphorylation of purified pyruvate kinase. Inactivation of pyruvate kinase by 0.3 nM glucagon or 1 microM phenylephrine was also suppressed by 10 nM insulin. Insulin did not act by increasing fructose 1,6-bisphosphate levels. The antagonism to glucagon correlated well with the ability of insulin to suppress activation of the cyclic AMP-dependent protein kinase. However, no such correlation was observed with phenylephrine in the absence or presence of insulin. Thus, insulin can enhance pyruvate kinase activity by both cyclic AMP-dependent and independent mechanisms.  相似文献   

9.
Rat hemidiaphragms incubated with epinephrine exhibited increases in cyclic AMP content and protein kinase activity which were proportional to the logarithm of the hormone concentration from 0.1–2 μM. The fraction of glycogen synthase made independent of glucose-6-P for activity (%I) decreased concomitantly, but correlated only with epinephrine concentrations up to 0.2 μM. Insulin (0–100 mU/ml) increased glycogen synthase %I in a dose-dependent manner with no change in cyclic AMP concentration. Protein kinase activity increased slightly at the lowest insulin concentration, then decreased slightly as glycogen synthase %I increased. Insulin was without effect when administered with a supramaximal dose of epinephrine. In the presence of submaximal epinephrine, insulin produced a dose-dependent increase in glycogen synthase %I which correlated with a decrease in protein kinase activity, without changing cyclic AMP. Insulin had no effect on the increases in cyclic AMP produced by varying levels of epinephrine. However, the activation of protein kinase activity by endogenous cyclic AMP was inhibited in the presence of insulin. The glycogen synthase %I response to epinephrine also was less sensitive in the presence of insulin. Insulin antagonizes the activation of cyclic AMP-dependent protein kinase by epinephrine without altering cyclic AMP levels.  相似文献   

10.
1. Hepatocytes were isolated by collagenase perfusion of livers from fed rats and established in stationary monolayer culture. 2. Degradation of intracellular protein was measured in these monolayers after labelling for 16h with [3H]leucine followed by a 3h chase period in medium containing 2mM-leucine. 3. Proteolysis in this system was stimulated by physiological concentrations of glucagon and also by added dibutyryl cyclic AMP. The effects of these two agents were not additive, which is consistent with the view that they act by the same mechanism. 4. A close correlation was found between intracellular cyclic AMP concentrations generated by glucagon and the degree of stimulation of proteolysis elicited by the hormone. 5. Insulin reduced glucagon-stimulated proteolysis, but not glucagon-elevated intracellular cyclic AMP concentrations. 6. The continual presence of either insulin or glucagon was necessary for the full expression of their effects on proteolysis. 7. In the presence of cycloheximide, proteolysis was normally responsive to glucagon but not to insulin. In contrast, proteolysis was not responsive to either hormone in the presence of ammonia, an agent that blocks the final lysosomal step of protein breakdown. 8. We propose that in hepatocyte monolayers glucagon may act via cyclic AMP to increase cellular autophagy and thus increase proteolysis, whereas insulin inhibits these processes independently of cyclic AMP.  相似文献   

11.
Developmental changes in the concentration of adenosine 3':5'-monophosphate (cyclic AMP) and the effects of glucagon and epinephrine were studied in the perinatal rat liver. Hepatic cyclic AMP concentration doubled during the last day of gestation. After birth, the cyclic AMP concentration continued to increase and maximal levels were observed on the fifth postnatal day. Surgical delivery of foetuses on days 20, 21 and 22 of gestation resulted in a rapid increase in cyclic AMP concentration. Maximal concentrations were reached within one hour of delivery in the day-21 and day-22 foetuses. However with surgically delivered day-20 foetuses, the cyclic AMP concentration increased for a least two hours. Glucagon and epinephrine increases the hepatic cyclic AMP concentration in rats delivered surgically on days 20, 21 and 22 of gestation and in postnatal rats. Maximal stimulation by epinephrine was observed in 2-day-old rats. Maximal stimulation by glucagon was observed in 10-day-old rats. The results support the hypothesis that cyclic AMP is the intracellular effector for the synthesis of some enzymes in the perinatal rat. The cyclic AMP concentration in the perinatal rat liver in vivo appears to be controlled by changes in the relative concentrations of plasma glucagon and insulin.  相似文献   

12.
Glucagon and dibutyryl cyclic AMP exerted both stimulatory and inhibitory effects on hepatocyte DNA synthesis when added to primary monolayer cultures in the presence of serum, dexamethasone, insulin and epidermal growth factor. The stimulation occurred at low concentrations of glucagon (1 pM-1 nM) or dibutyryl cyclic AMP (1 nM-1 microM), while the agents inhibited DNA synthesis at higher concentrations (usually glucagon at over 10 nM or dibutyryl cyclic AMP at over 10 microM). The stimulatory effect was stronger at low cell densities (less than 20 X 10(3) hepatocytes/cm2). When the hepatocytes were cultured at higher densities, stimulatory effects were reduced or absent and the inhibition of (hormone-induced) DNA synthesis by a high concentration of glucagon was much more pronounced than at low cell densities. These results indicate dual, bidirectional, effects of cyclic AMP on hepatocyte DNA synthesis.  相似文献   

13.
1. The mechanism of action of glucagon and epinephrine was studied in perfused rat livers. Hormone-induced transitions from one metabolic steady state to another were followed in a non-recirculating perfusion system. Glucose and lactate production rates, oxygen uptake and K+ redistribution were measured. 2. Glucagon (3 nM), cyclic AMP (0.2 mM) and epinephrine (0.5 muM) had similar effects on K+ concentrations in the perfusate. Glycogenolysis responded more rapidly and O2 uptake was enhanced to a larger extent with epinephrine than with the other agents. alpha- and beta-receptor responses were differentiated by the use of phenylephrine (0.5 muM), isoproterenol (0.5 muM) and adrenergic blocking agents (phentolamine and beta-blocker Ro 3-4787 at 0.1 mM). 3. alpha-receptors mediated an activation of glucose production that was very rapid and was paralleled by a transient decrease of K+ concentrations in the effluent from the liver, lactate production rose gradually. Respiration was also enhanced, but fell again as lactate production increased. 4. beta-receptor stimulation was followed by an increase of glucose production that was less drastic and was paralleled by a K+ release, lactate production and respiration were only slightly enhanced. beta stimulation and glucagon both resulted in an inhibition of the alpha-adrenergic effect on lactate release and simultaneously increased O2 uptake. 5. We concluded that in perfused rat livers alpha- as well as beta-adrenergic receptor stimulation resulted in an activation of glycogenolysis, possibly by two different mechanisms.  相似文献   

14.
Of all available liver cells in culture, only primary cultured hepatocytes are known to respond to glucagon in vitro. In the present study we investigated whether glucagon could stimulate amino acid transport and tyrosine aminotransferase (TAT;EC 2.6.1.5) activity (two well-characterized glucagon effects in the liver) in Fao cells, a highly differentiated rat hepatoma cell line. We found that glucagon had no effect on transport of alpha-aminoisobutyric acid (AIB; a non-metabolizable alanine analogue) nor on TAT activity, even though both activities could be fully induced by insulin [2-fold and 3-fold effects for AIB transport and TAT activity, respectively, after 6h; EC50 (median effective concentration) = 0.3 nM], or by dexamethasone (5-8-fold effects after 20 h; EC50 = 2 nM). Analysis of [125I]iodoglucagon binding revealed that Fao cells bind less than 1% as much glucagon as do hepatocytes, whereas insulin binding in Fao cells was 50% higher than in hepatocytes. The addition of dibutyryl cyclic AMP, which fully mimics the glucagon stimulation of both AIB transport and TAT activity in hepatocytes, induced TAT activity in Fao cells (a 2-fold effect at 0.1 mM-dibutyryl cyclic AMP) but had no effect on AIB transport. Cholera toxin stimulated TAT activity to the same extent as did dibutyryl cyclic AMP. These results indicate that the lack of glucagon responsiveness in cultured hepatoma cells results from both a receptor defect and, for amino acid transport, an additional post-receptor defect. Moreover, the results show that amino acid transport and TAT activity, which appeared to be co-induced by insulin or by dexamethasone in these cells, respond differently to cyclic AMP. This suggests that different mechanisms are involved in the induction of these activities by glucagon in liver.  相似文献   

15.
Intracellular free-calcium levels were measured in strips of longitudinal smooth muscle from guinea-pig ileum; fura-2 was used as a calcium monitor. At rest the calcium concentration was about 180 nM, and this rose to 300-400 nM following electrical stimulation and during spontaneous calcium transients (all measurements at 23-25 degrees C). Isoprenaline suppressed the spontaneous calcium transients, and reduced the resting calcium level to about 130 nM. This fall in resting calcium concentration was seen even in muscle strips which did not have spontaneous activity. Elevation of intracellular cyclic AMP levels, produced by forskolin or dibutyryl cyclic AMP, mimicked the actions of isoprenaline. We conclude that the relaxant effects of beta-adrenergic agonists of visceral smooth muscle may be explained partly by a fall in intracellular resting free-calcium level, mediated via an increase in cyclic AMP.  相似文献   

16.
The mechanism by which alpha 2-adrenergic agonists inhibit exocytosis was investigated in electrically permeabilized insulin secreting RINm5F cells. In this preparation alpha 2-adrenoceptors remain coupled to adenylate cyclase, since basal- and forskolin-stimulated cyclic AMP production was lowered by epinephrine and clonidine by 30-50%. Cyclic AMP levels did not correlate with the rate of insulin secretion. Thus, at low Ca2+, forskolin enhanced cyclic AMP levels 5-fold without eliciting secretion, and Ca2+-stimulated secretion was associated with decreased cyclic AMP accumulation. Epinephrine (plus propranolol) inhibited Ca2+-induced insulin secretion in a GTP-dependent manner. The maximal inhibition (43%) occurred at 500 microM GTP. Clonidine also inhibited Ca2+-stimulated secretion. Replacement of GTP by GDP or by the nonhydrolyzable GTP analog guanosine 5'-(3-O-thio)triphosphate as well as treatment of the cells with pertussis toxin prior to permeabilization abolished epinephrine inhibition of insulin secretion. Pertussis toxin did not affect Ca2+-stimulated secretion. Insulin release stimulated by 1,2-didecanoyl glycerol was also lowered by epinephrine suggesting an effect distal to the activation of protein kinase C (Ca2+/phospholipid-dependent enzyme). These results taken together with the ability of epinephrine to inhibit ionomycin-induced insulin secretion in intact cells suggest that alpha 2-adrenergic inhibition is distal to the generation of second messengers. A model is proposed for alpha 2-adrenoceptor coupling to two effector systems, namely the adenylate cyclase and the exocytotic site in insulin-secreting cells.  相似文献   

17.
Incubation of adipocytes in glucose-free medium with adrenocorticotrophic hormone, epinephrine, isoproterenol, or norepinephrine increased the concentration of cyclic AMP and the percentage of phosphorylase a activity, and decreased the percentage of glycogen synthase I activity. Glucose was essentially without effect on glycogen synthase or phosphorylase in either the presence or absence of epinephrine. Although glucose potentiated the action of insulin to activate glycogen synthase, the hexose did not enhance the effectiveness of insulin in the presence of epinephrine. Likewise, glucose did not increase the ability of insulin to oppose the activation of phosphorylase by epinephrine.The activation of glycogen synthase by insulin was not associated with a decrease in the concentration of cyclic AMP. Insulin partially blocked the rise in cyclic AMP due to isoproterenol, adrenocorticotrophic hormone, and norepinephrine. The maximum effects of isoproterenol on glycogen synthase and phosphorylase were observed when the concentration of cyclic AMP was increased twofold. However, insulin clearly opposed the changes in enzyme activity produced by isoproterenol (and also adrenocorticotrophic hormone, epinephrine and norepinephrine) even though concentrations of cyclic AMP were still increased three- to fourfold. Nicotinic acid opposed the increases in cyclic AMP due to adrenocorticotrophic hormone, isoproterenol and norepinephrine to the same extent as insulin; however, nicotinic acid was ineffective in opposing the activation of phosphorylase and inactivation of glycogen synthase produced by these agents. Thus, it is unlikely that the effects of insulin on glycogen synthase and phosphorylase result from an action of the hormone to decrease the concentration of cyclic AMP.  相似文献   

18.
The effects of insulin and glucagon on glycogen metabolism were studied in cultured fetal hepatocytes transplanted from 15-day-old fetuses. The effects of these hormones were examined just after transplantation, when the cells contained only minute amounts of glycogen, and during the 3 to 4 day culture period, when the hepatocytes were exposed to 10 muM cortisol and actively accumulated glycogen. At all stages of the culture, glucagon addition (10 nM) was followed by a rapid depletion of labeled glycogen, previously synthesized during a pulse labeling with [14C]glucose: this effect was mimicked by N6, O2'-dibutyryl adenosine 3':5'-monophosphate (dibutyryl cyclic AMP) (0.3 to 1 nM). Such a glycogenolytic effect of glucagon was observed even 6 hours after transplantation, i.e. at a time when cortisol was not present. In addition, glucagon clearly induced cyclic adenosine 3':5'-monosphosphate (cyclic AMP) accumulation in cells grown for 18 hours in the absence of cortisol. With cells grown for 3 days in the presence of cortisol, glucagon-dependent glycogenolysis was also obtained when cortisol was removed from the medium 20 hours before hormone addition. Thus the presence of cortisol is not necessary either to maintain a response to glucagon or for the onset of the glycogenolytic effect of glucagon. Insulin addition (10 nM) stimulated [14C]glucose incorporation into glycogen at all stages of the culture when grown in the presence of cortisol; no glycogenic response to insulin was observed 6 hours after transplantation where cortisol was not previously introduced. In addition, if the hepatocytes were grown in the presence of insulin alone (i.e. in the absence of cortisol) no significant storage of glycogen occurred. Maximal storage (or labeling) of glycogen was observed when hepatocytes were grown in the presence of both cortisol and insulin. The presence of cortisol was therefore necessary for the expression of the glycogenic effect of insulin. These data show that marked difference exist between the onset of developmental responses towards glucagon and insulin. The glucagon-dependent regulatory pathway should be present very early in fetal development and should not depend on cortisol. On the contrary, the onset of the insulin-dependent regulatory pathway seems to be induced during culture, and it is likely that this is caused by cortisol.  相似文献   

19.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 2 1/2-fold 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

20.
Normal male rats were made chronically diabetic by injection of alloxan or acutely diabetic by injection of anti-insulin serum. The concentration of cyclic AMP in epididymal adipose tissue was increased approximately 24 h after alloxan administration and up to 7-fold 72 h post-alloxan. Treatment of alloxan-diabetic rats with insulin for 4 h completely suppressed lipolysis but only partially suppressed cyclic AMP levels; 6 h following insulin treatment cyclic AMP levels were normal. When segments of the epididymal fat bodies were incubated in vitro the high cyclic AMP levels were not maintained but instead decreased spontaneously. Addition of insulin to the incubation media decreased lipolysis in tissues of diabetic rats to levels measured in tissues of normal rats and accelerated the decline in cyclic AMP levels but did not return cyclic AMP levels to normal. Rats rendered acutely insulin deficient by injection of anti-insulin serum showed increased plasma glucose and free fatty acid levels and increased adipose tissue free fatty acid, and cyclic AMP levels 30 min following injection of the antiserum. Plasma glucagon levels increased but not until 2 h following anti-insulin serum, thereby excluding the possibility that an increment in plasma glucagon is the primary stimulus for the acceleration of lipolysis in diabetes. These data are consistent with the view that control of adipose tissue cyclic AMP levels in situ is an important physiologic action of insulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号