首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G A Martin  G Bollag  F McCormick    A Abo 《The EMBO journal》1995,14(9):1970-1978
We identified three proteins in neutrophil cytosol of molecular size 65, 62 and 68 kDa which interact in a GTP-dependent manner with rac1 and CDC42Hs, but not with rho. Purification of p65 and subsequent peptide sequencing revealed identity to rat brain PAK65 and to yeast STE20 kinase domains. Based on these sequences we screened a human placenta library and cloned the full-length cDNA. The complete amino acid sequence of the human cDNA shares approximately identity with rat brain PAK65; within the kinase domain the human protein shares > 95% and approximately 63% identity with rat PAK65 and yeast STE20 respectively. The new human (h)PAK65 mRNA is ubiquitously expressed and hPAK65 protein is distinct from either human or rat brain PAK65. Recombinant hPAK65 exhibits identical specificity to the endogenous p65; both can bind rac1 and CDC42Hs in a GTP-dependent manner. The GTP-bound forms of rac1 and CDC42Hs induce autophosphorylation of hPAK65 on serine residues only. hPAK65 activated by either rac1 or CDC42Hs is phosphorylated on the same sites. Induction of hPAK65 autophosphorylation by rac1 or CDC42Hs stimulates hPAK65 kinase activity towards myelin basic protein and once hPAK65 is activated, rac1 or CDC42Hs are no longer required to keep it active. The affinities of rac/CDC42Hs for the non-phosphorylated and phosphorylated hPAK65 were similar. hPAK65 had only a marginal effect on the intrinsic GTPase activity of CDC42Hs, but significantly affected the binding and GAP activity of p190. These data are consistent with a model in which hPAK65 functions as an effector molecule for rac1 and CDC42Hs.  相似文献   

2.
The Saccharomyces cerevisiae CDC42 gene product is involved in the morphogenetic events of the cell division cycle; temperature-sensitive cdc42 mutants are unable to form buds and display delocalized cell-surface deposition at the restrictive temperature (Adams, A. E. M., D. I. Johnson, R. M. Longnecker, B. F. Sloat, and J. R. Pringle. 1990. J. Cell Biol. 111:131-142). To begin a molecular analysis of CDC42 function, we have isolated the CDC42 gene from a yeast genomic DNA library. The use of the cloned DNA to create a deletion of CDC42 confirmed that the gene is essential. Overexpression of CDC42 under control of the GAL10 promoter was not grossly deleterious to cell growth but did perturb the normal pattern of selection of budding sites. Determination of the DNA and predicted amino acid sequences of CDC42 revealed a high degree of similarity in amino acid sequence to the ras and rho (Madaule, P., R. Axel, and A. M. Myers. 1987. Proc. Natl. Acad. Sci. 84:779-783) families of gene products. The similarities to ras proteins (approximately 40% identical or related amino acids overall) were most pronounced in the regions that have been implicated in GTP binding and hydrolysis and in the COOH-terminal modifications leading to membrane association, suggesting that CDC42 function also involves these biochemical properties. The similarities to the rho proteins (approximately 60% identical or related amino acids overall) were more widely distributed through the coding region, suggesting more extensive similarities in as yet undefined biochemical properties and functions.  相似文献   

3.
The Rho-type GTPase Cdc42p is required for cell polarization and bud emergence in Saccharomyces cerevisiae. To identify genes whose functions are linked to CDC42, we screened for (i) multicopy suppressors of a Ts- cdc42 mutant, (ii) mutants that require multiple copies of CDC42 for survival, and (iii) mutations that display synthetic lethality with a partial-loss-of-function allele of CDC24, which encodes a guanine nucleotide exchange factor for Cdc42p. In all three screens, we identified a new gene, BEM4. Cells from which BEM4 was deleted were inviable at 37 degrees C. These cells became unbudded, large, and round, consistent with a model in which Bem4p acts together with Cdc42p in polarity establishment and bud emergence. In some strains, the ability of CDC42 to serve as a multicopy suppressor of the Ts- growth defect of deltabem4 cells required co-overexpression of Rho1p, which is an essential Rho-type GTPase necessary for cell wall integrity. This finding suggests that Bem4p also affects Rho1p function. Bem4p displayed two-hybrid interactions with Cdc42p, Rho1p, and two of the three other known yeast Rho-type GTPases, suggesting that Bem4p can interact with multiple Rho-type GTPases. Models for the role of Bem4p include that it serves as a chaperone or modulates the interaction of these GTPases with one or more of their targets or regulators.  相似文献   

4.
Pheromone signalling in Saccharomyces cerevisiae is mediated by the STE4-STE18 G-protein beta gamma subunits. A possible target for the subunits is Ste20p, whose structural homolog, the serine/threonine kinase PAK, is activated by GTP-binding p21s Cdc42 and Rac1. The putative Cdc42p-binding domain of Ste20p, expressed as a fusion protein, binds human and yeast GTP-binding Cdc42p. Cdc42p is required for alpha-factor-induced activation of FUS1.cdc24ts strains defective for Cdc42p GDP/GTP exchange show no pheromone induction at restrictive temperatures but are partially rescued by overexpression of Cdc42p, which is potentiated by Cdc42p12V mutants. Epistatic analysis indicates that CDC24 and CDC42 lie between STE4 and STE20 in the pathway. The two-hybrid system revealed that Ste4p interacts with Cdc24p. We propose that Cdc42p plays a pivotal role both in polarization of the cytoskeleton and in pheromone signalling.  相似文献   

5.
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.  相似文献   

6.
Budding in the yeast Saccharomyces cerevisiae involves a polarized deposition of new cell surface material that is associated with a highly asymmetric disposition of the actin cytoskeleton. Mutants defective in gene CDC24, which are unable to bud or establish cell polarity, have been of great interest with regard to both the mechanisms of cellular morphogenesis and the mechanisms that coordinate cell-cycle events. To gain further insights into these problems, we sought additional mutants with defects in budding. We report here that temperature-sensitive mutants defective in genes CDC42 and CDC43, like cdc24 mutants, fail to bud but continue growth at restrictive temperature, and thus arrest as large unbudded cells. Nearly all of the arrested cells appear to begin nuclear cycles (as judged by the occurrence of DNA replication and the formation and elongation of mitotic spindles), and many go on to complete nuclear division, supporting the hypothesis that the events associated with budding and those of the nuclear cycle represent two independent pathways within the cell cycle. The arrested mutant cells display delocalized cell- surface deposition associated with a loss of asymmetry of the actin cytoskeleton. CDC42 maps distal to the rDNA on chromosome XII and CDC43 maps near lys5 on chromosome VII.  相似文献   

7.
The CDC42Hs protein appears to be an isoform of the ras-related GTP-binding protein G25K and is an apparent human homolog of the Saccharomyces cerevisiae cell-division-cycle protein, CDC42Sc. In this study, we report the identification of a GTPase-activating protein (GAP) for CDC42Hs from human platelets (designated from here on as CDC42Hs-GAP). The CDC42Hs-GAP activity was solubilized from platelet membranes, recovered through successive chromatography steps (the final step being Mono-Q chromatography), and purified approximately 3500-fold. The CDC42Hs-GAP activity appeared to correspond to a polypeptide with an apparent Mr of approximately 25,000. The GTPase activities of the purified human platelet CDC42Hs, the Escherichia coli-recombinant CDC42Hs, and the Spodoptera frugiperda-recombinant GTP-binding proteins are all stimulated by the CDC42Hs-GAP to identical extents, which indicates that the recombinant CDC42Hs proteins are as effective as the native human platelet protein in coupling to the GAP. However, a mutant form of the E. coli-recombinant CDC42Hs which contains a valine residue at position 12 (CDC42HsVal-12) has a significantly reduced intrinsic GTPase activity (relative to the wild type CDC42HsGly-12) which is not stimulated by the CDC42Hs-GAP. The CDC42Hs-GAP also does not stimulate the GTPase activities of the ras or rap GTP-binding proteins; however, it is capable of a weak stimulation of the GTPase activity of mammalian rho. Based on the apparent similarities in the molecular size of the CDC42Hs- and rho-GAPs (i.e. 25-30 kDa), and the cross-reactivity of rho with the CDC42Hs-GAP, it seems likely that the CDC42Hs- and rho-GAPs will constitute a specific subclass of the ras-related GAP superfamily.  相似文献   

8.
This work reports the isolation and molecular characterization of CDC42 and RAC1 cDNAs from the ectomycorrhiza forming filamentous homobasidiomycete Suillus bovinus. Previously, no RAC gene was described from filamentous fungi and no CDC42 gene was described from homobasidiomycetes. Southern hybridization with SbCDC42 and SbRAC1 cDNAs indicated that the S. bovinus genome contains only one CDC42 and one RAC1 gene. The predicted amino acid sequence of SbRaclp is 77% identical with the Rac1B protein of chick, whereas SbCdc42p is most identical with Schizosaccharomyces pombe Cdc42p, showing 88% identity. In the predicted amino acid sequences of SbRaclp and SbCdc42p, the five guanine nucleotide binding regions, switch I and II, and the effector domain are highly identical to those known in other small GTPases. These domain structures suggest that in S. bovinus, SbRac1p and SbCdc42p function as molecular switches regulating the organization of actin cytoskeleton, similar to yeasts and mammals. SbRAC1 and SbCDC42 were expressed in vegetative and ectomycorrhizal hyphae, and SbCdc42p was detected in ectomycorrhiza-forming hyphae if growth and differentiation of the symbiotic hyphae took place. Cdc42p and actin were localized at the tips of S. bovinus vegetative hyphae. Similar to yeast, in filamentous fungi Cdc42p may be necessary to maintain the actin cytoskeleton at hyphal tips, making the polarized growth of the hyphae possible. In developing ectomycorrhiza, Cdc42p and actin were visualized in association with plasma membrane in swollen cells typical to the symbiotic hyphae. The role of Cdc42p and actin in regulation of the growth pattern and morphogenesis of ectomycorrhizal hyphae is discussed.  相似文献   

9.
The highly conserved small GTPase Cdc42p is a key regulator of cell polarity and cytoskeletal organization in eukaryotic cells. Multiple effectors of Cdc42p have been identified, although it is unclear how their activities are coordinated to produce particular cell behaviors. One strategy used to address the contributions made by different effector pathways downstream of small GTPases has been the use of "effector-loop" mutants of the GTPase that selectively impair only a subset of effector pathways. We now report the generation and preliminary characterization of a set of effector-loop mutants of Saccharomyces cerevisiae CDC42. These mutants define genetically separable pathways influencing actin or septin organization. We have characterized the phenotypic defects of these mutants and the binding defects of the encoded proteins to known yeast Cdc42p effectors in vitro. The results suggest that these effectors cannot account for the observed phenotypes, and therefore that unknown effectors exist that affect both actin and septin organization. The availability of partial function alleles of CDC42 in a genetically tractable system serves as a useful starting point for genetic approaches to identify such novel effectors.  相似文献   

10.
The yeast Candida albicans is the most important fungal pathogen of humans and a model organism for studying fungal virulence. Sequencing of the C. albicans genome will soon be completed, allowing systematic approaches to analyse gene function. However, techniques to define and characterize essential genes in this permanently diploid yeast are limited. We have developed an efficient method to create conditional lethal C. albicans null mutants by inducible, FLP-mediated gene deletion. Both wild-type alleles of the CDC42 or the BEM1 gene were deleted in strains that carried an additional copy of the respective gene that could be excised from the genome by the site-specific recombinase FLP. Expression of a C. albicans-adapted FLP gene under the control of an inducible promoter generated cell populations consisting of > or = 99.9% null mutants. Upon plating, these cells were unable to form colonies, demonstrating that CDC42 and BEM1 are essential genes in C. albicans. The cdc42 null mutants failed to produce buds and hyphae and grew as large, round cells instead, suggesting that they lacked the ability to produce polarized cell growth. However, the cells still responded to hyphal inducing signals by aggregating and expressing hypha-specific genes, behaviours typical of the mycelial growth form of C. albicans. Budding cells and germ tubes of bem1 null mutants exhibited morphological abnormalities, demonstrating that BEM1 is essential for normal growth of both yeast and hyphae. Inducible, FLP-mediated gene deletion provides a powerful approach to generate conditional lethal C. albicans mutants and allows the functional analysis of essential genes.  相似文献   

11.
12.
RHO3 and RHO4 are members of the ras superfamily genes of the yeast Saccharomyces cerevisiae and are related functionally to each other. Experiments using a conditionally expressed allele of RHO4 revealed that depletion of both the RHO3 and RHO4 gene products resulted in lysis of cells with a small bud, which could be prevented by the presence of osmotic stabilizing agents in the medium. rho3 rho4 cells incubated in medium containing an osmotic stabilizing agent were rounded and enlarged and displayed delocalized deposition of chitin and delocalization of actin patches, indicating that these cells lost cell polarity. Nine genes whose overexpression could suppress the defect of the RHO3 function were isolated (SRO genes). Two of them were identical with CDC42 and BEM1, bud site assembly genes involved in the process of bud emergence. A high dose of CDC42 complemented the rho3 defect, whereas overexpression of RHO3 had an inhibitory effect on the growth of mutants defective in the CDC24-CDC42 pathway. These results, along with comparison of cell morphology between rho3 rho4 cells and cdc24 (or cdc42) mutant cells kept under the restrictive conditions, strongly suggest that the functions of RHO3 and RHO4 are required after initiation of bud formation to maintain cell polarity during maturation of daughter cells.  相似文献   

13.
The CDC4 gene product is associated with the yeast nuclear skeleton   总被引:4,自引:0,他引:4  
The CDC4 gene product of Saccharomyces cerevisiae is required at the late G1/S phase boundary of the cell cycle. In an attempt to better understand the function of CDC4, we performed experiments to localize this protein in the yeast cell. Using antisera, directed against a TrpE-CDC4 fusion protein, to analyze immuno-blots of different subcellular fractions from yeast, we demonstrated that the CDC4 gene product localizes in the nucleus by two different biochemical preparations of the yeast nucleoskeletal proteins. Immunofluorescence microscopy further confirmed its nuclear localization. These data support a model that includes the CDC4 gene product as a component of the yeast nuclear skeleton. The significance of this association in relationship to the biological role of CDC4 is discussed.  相似文献   

14.
Abstract

Candida albicans, fungal yeast causes several lethal infections in immune-suppressed patients and recently emerged as drug-resistant pathogens worldwide. The present study aimed to screen putative drug targets of Candia albicans and to study the binding potential of novel natural lead compounds towards these targets by computational virtual screening and molecular dynamic (MD) simulation. Through extensive analysis of mitogen-activated protein kinase (MAPK) signalling pathways, mitogen-activated protein kinase-1 (HOG1) and cell division control protein-42 (CDC42) genes were prioritized as putative targets based on their virulent functions. The three-dimensional structures of these genes, not available in their native forms, were computationally modeled and validated. 76 lead molecules from various natural sources were screened and their drug likeliness and pharmacokinetic features were predicted. Among these ligands, two lead molecules that demonstrated ideal drug-likeliness and pharmacokinetic features were docked against HOG1 and CDC42 and their binding potential was compared with the binding of conventional drug Fluconazole with their usual target. The prediction was computationally validated by MD simulation. The current study revealed that Cudraxanthone-S present in Cudrania cochinchinensis and Scutifoliamide-B present in Piper scutifolium exhibited ideal drug likeliness, pharmacokinetics and binding potential to the prioritized targets in comparison with the binding of Fluconazole and their usual target. MD simulation showed that CDC42-Cudraxanthone-S and HOG1-Scutifoliamide-B complexes were exhibited stability throughout MD simulation. Thus, the study provides significant insight into employing HOG1 and CDC42 of MAPK as putative drug targets of C. albicans and Cudraxanthone-S and Scutifoliamide-B as potential inhibitors for drug discovery.

Communicated by Ramaswamy H. Sarma  相似文献   

15.
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.  相似文献   

16.
CDC42 and FGD1 Cause Distinct Signaling and Transforming Activities   总被引:8,自引:2,他引:6       下载免费PDF全文
Activated forms of different Rho family members (CDC42, Rac1, RhoA, RhoB, and RhoG) have been shown to transform NIH 3T3 cells as well as contribute to Ras transformation. Rho family guanine nucleotide exchange factors (GEFs) (also known as Dbl family proteins) that activate CDC42, Rac1, and RhoA also demonstrate oncogenic potential. The faciogenital dysplasia gene product, FGD1, is a Dbl family member that has recently been shown to function as a CDC42-specific GEF. Mutations within the FGD1 locus cosegregate with faciogenital dysplasia, a multisystemic disorder resulting in extensive growth impairments throughout the skeletal and urogenital systems. Here we demonstrate that FGD1 expression is sufficient to cause tumorigenic transformation of NIH 3T3 fibroblasts. Although both FGD1 and constitutively activated CDC42 cooperated with Raf and showed synergistic focus-forming activity, both quantitative and qualitative differences in their functions were seen. FGD1 and CDC42 also activated common nuclear signaling pathways. However, whereas both showed comparable activation of c-Jun, CDC42 showed stronger activation of serum response factor and FGD1 was consistently a better activator of Elk-1. Although coexpression of FGD1 with specific inhibitors of CDC42 function demonstrated the dependence of FGD1 signaling activity on CDC42 function, FGD1 signaling activities were not always consistent with the direct or exclusive stimulation of CDC42 function. In summary, FGD1 and CDC42 signaling and transformation are distinct, thus suggesting that FGD1 may be mediating some of its biological activities through non-CDC42 targets.  相似文献   

17.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

18.
Mucins may be the ugly ducklings of molecular biology. Their large size, repetitive nature, and unglamorous biological activities have not favored their study. However, integral membrane mucins have conserved intracellular C termini that may influence intracellular signaling. In a recent issue of Genes & Development, Cullen et al. show that the C terminus of membrane mucin-like Msb2 activates a CDC42/MAPK cascade to control filamentous growth of baker's yeast.  相似文献   

19.
20.
CDC25 phosphatases are essential and evolutionary-conserved actors of the eukaryotic cell cycle control. To examine and compare the properties of three splicing variants of human CDC25B, recombinant fission yeast strains expressing the human proteins in place of the endogenous Cdc25 were generated and characterized. We report, that the three CDC25B variants: (i) efficiently replace the yeast counterpart in vegetative growth, (ii) partly restore the gamma and UV radiation DNA damage-activated checkpoint, (iii) fail to restore the DNA replication checkpoint activated by hydroxyurea. Although these yeast strains do not reveal the specific functions of the human CDC25B variants, they should provide useful screening tools for the identification of new cell cycle regulators and pharmacological inhibitors of CDC25 phosphatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号