首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mild digestion of Serratia marcescens tryptophan synthase β2 subunit produces a modified β2 subunit (nicked β2). The nicked β2 subunit remains essentially intact and is immunochemically reactive with native β2 subunit antiserum. Denaturation of the nicked β2 subunit yields two principal peptide fragments whose minimum molecular weights are 29,500 and 13,400. Loss of enzyme activity is associated with the selective proteolysis. The enzyme cofactor pyridoxal phosphate binding site is on the larger fragment. Following separation of the fragments by urea-gel chromatography, the separated peptides retain immunological cross-reactivity with native β2 subunit antiserum. These fragments apparently represent two domains that comprise the native Holo β2 subunit. The immunochemical data suggest that these fragments, when isolated, can assume some tertiary structure and that they may exist as such prior to β monomer or β2 dimer assembly. The folded fragments may represent intermediates in the biosynthesis of the β2 subunit as has been suggested for the E. coli enzyme (A. Högberg-Raibaud and M. E. Goldberg, 1977, Proc. Nat. Acad. Sci. USA74, 442; Biochemistry16, 4014).  相似文献   

2.
The tryptophan synthase alpha 2 beta 2 complex catalyzes tryptophan (Trp) biosynthesis from serine plus either indole (IN) or indole-3-glycerol phosphate (InGP). The photoreactive 5-azido analog in IN (AzIN), itself a substrate in the dark, was utilized to examine the substrate binding sites on this enzyme. When irradiated with AzIN at concentrations approaching IN saturation for the IN----Trp activity (0.1 mM), in the absence of serine, the enzyme was increasingly inactivated (up to 70-80%) concomitant with the progressive binding of a net of 2 mol AzIN per alpha beta equivalent. Little or no cooperativity in the binding of the 2 mol AzIN was observed. In contrast, there was minimal effect on the IN----InGP activity. Under these conditions AzIN appeared to be incorporated equally into each subunit. No significant inactivation nor binding occurred in the presence of serine. A quantitatively similar inactivation of InGP----Trp activity was observed over the same AzIN concentration range, suggesting common IN sites for Trp biosynthesis from either indole substrate. At higher concentrations (0.1-0.7 mM), no further inactivation occurred, although there was extensive additional binding (up to 10 mol/alpha beta equivalent). These data are consistent, although more clear-cut quantitatively, with the high- and low-affinity sites proposed from equilibrium dialysis studies. AzIN binding studies utilizing the isolated beta 2 subunit confirmed earlier reports suggesting the existence of many nonspecific IN binding sites on this subunit.  相似文献   

3.
4.
Homologs of the dimeric HU protein of Escherichia coli can be found in every prokaryotic organism that has been analyzed. In this work, we demonstrate that Serratia marcescens synthesizes two distinct HU subunits, like E. coli and Salmonella typhimurium, suggesting that the heterodimeric HU protein could be a common feature of enteric bacteria. A phylogenetic analysis of the HU-type proteins (HU and IHF) is presented, and a scheme for the origin of the hup genes and the onset of HU heterodimericity is suggested.  相似文献   

5.
6.
The tryptophan synthase beta 2 protein (EC 4.2.1.20) of Escherichia coli, Enterobacter aerogenes, Serratia marcescens, and Erwinia carotovora was purified and compared. Two-dimensional total peptide patterns for each of the four beta2 proteins obtained after digestion with trypsin showed that approximately three quarters of the total peptides are common to all four peptides. Examination of only arginine-containing peptides showed that approximately half of these peptides are common. From a comparative standpoint, the data provide evidence that the primary structure of beta 2 proteins is relatively similar, indicating that the trpB cistron is evolutionarily conserved in the enteric bacteria group.  相似文献   

7.
Monoclonal antibodies directed against the native form of the beta 2 subunit of Escherichia coli tryptophan synthase strongly inhibit both its tryptophan synthase and its serine deaminase activities. The mechanism of this inactivation is studied here, by monitoring quantitatively the absorption and fluorescence properties of different well-characterized successive intermediates in the catalytic cycle of tryptophan synthase. It is shown that the antibodies interfere specifically with the formation of one or the other of these intermediates. It is concluded that the antibodies either modify or block the molecular flexibility of the protein, thus preventing conformational changes that the protein has to undergo during the catalysis. At least two different stages of the catalytic process, each one sensitive to a different class of antibodies, are shown to involve molecular movements of the polypeptide chain. Indications are given on the regions of the molecule involved in these movements.  相似文献   

8.
K Tanizawa  E W Miles 《Biochemistry》1983,22(15):3594-3603
Inactivation of the beta 2 subunit and of the alpha 2 beta 2 complex of tryptophan synthase of Escherichia coli by the arginine-specific dicarbonyl reagent phenylglyoxal results from modification of one arginyl residue per beta monomer. The substrate L-serine protects the holo beta 2 subunit and the holo alpha 2 beta 2 complex from both inactivation and arginine modification but has no effect on the inactivation or modification of the apo forms of the enzyme. This result and the finding that phenylglyoxal competes with L-serine in reactions catalyzed by both the holo beta 2 subunit and the holo alpha 2 beta 2 complex indicate that L-serine and phenylglyoxal both bind to the same essential arginyl residue in the holo beta 2 subunit. The apo beta 2 subunit is protected from phenylglyoxal inactivation much more effectively by phosphopyridoxyl-L-serine than by either pyridoxal phosphate or pyridoxine phosphate, both of which lack the L-serine moiety. The phenylglyoxal-modified apo beta 2 subunit binds pyridoxal phosphate and the alpha subunit but cannot bind L-serine or L-tryptophan. We conclude that the alpha-carboxyl group of L-serine and not the phosphate of pyridoxal phosphate binds to the essential arginyl residue in the beta 2 subunit. The specific arginyl residue in the beta 2 subunit which is protected by L-serine from modification by phenyl[2-14C]glyoxal has been identified as arginine-148 by isolating a labeled cyanogen bromide fragment (residues 135-149) and by digesting this fragment with pepsin to yield the labeled dipeptide arginine-methionine (residues 148-149). The primary sequence near arginine-148 contains three other basic residues (lysine-137, arginine-141, and arginine-150) which may facilitate anion binding and increase the reactivity of arginine-148. The conservation of the arginine residues 141, 148, and 150 in the sequences of tryptophan synthase from E. coli, Salmonella typhimurium, and yeast supports a functional role for these three residues in anion binding. The location and role of the active-site arginyl residues in the beta 2 subunit and in two other enzymes which contain pyridoxal phosphate, aspartate aminotransferase and glycogen phosphorylase, are compared.  相似文献   

9.
When the tryptophan synthase alpha- and beta(2)-subunits combine to form the alpha(2)beta(2)-complex, the enzymatic activity of each subunit is stimulated by 1-2 orders of magnitude. To elucidate the structural basis of this mutual activation, it is necessary to determine the structures of the alpha- and beta-subunits alone and together with the alpha(2)beta(2)-complex. The crystal structures of the tryptophan synthase alpha(2)beta(2)-complex from Salmonella typhimurium (Stalpha(2)beta(2)-complex) have already been reported. However, the structures of the subunit alone from mesophiles have not yet been determined. The structure of the tryptophan synthase alpha-subunit alone from Escherichia coli (Ecalpha-subunit) was determined by an X-ray crystallographic analysis at 2.3 A, which is the first report on the subunits alone from the mesophiles. The biggest difference between the structures of the Ecalpha-subunit alone and the alpha-subunit in the Stalpha(2)beta(2)-complex (Stalpha-subunit) was as follows. Helix 2' in the Stalpha-subunit, including an active site residue (Asp60), was changed to a flexible loop in the Ecalpha-subunit alone. The conversion of the helix to a loop resulted in the collapse of the correct active site conformation. This region is also an important part for the mutual activation in the Stalpha(2)beta(2)-complex and interaction with the beta-subunit. These results suggest that the formation of helix 2'that is essential for the stimulation of the enzymatic activity of the alpha-subunit is constructed by the induced-fit mode involved in conformational changes upon interaction between the alpha- and beta-subunits. This also confirms the prediction of the conformational changes based on the thermodynamic analysis for the association between the alpha- and beta-subunits.  相似文献   

10.
The aspartate transcarbamoylases (ATCase, EC 2.1.3.2) of Escherichia coli and Serratia marcescens have similar dodecameric enzyme structures (2(c3):3(r2] but differ in both regulatory and catalytic characteristics. The catalytic cistrons (pyrB) of the ATCases from E. coli and S. marcescens encode polypeptides of 311 and 306 amino acids, respectively; there is a 76% identity between the DNA sequences and an overall amino acid homology of 88% (38 differences). The regulatory cistrons (pyrI) of these ATCases encode polypeptides of 153 and 154 amino acids, respectively, and there is a 75% identity between the DNA sequences and an overall amino acid homology of 77% (36 differences). In both species, the two genes are arranged as a bicistronic operon, with pyrB promoter proximal. A comparison of the deduced amino acid sequences reveals that the active site and the allosteric binding sites, as well as most of the intrasubunit interactions and intersubunit associations, are conserved in the E. coli and the S. marcescens enzymes; however, there are specific differences which undoubtedly contribute to the catalytic and regulatory differences between the enzymes of the two species. These differences include residues that have been implicated in the T-R transition, c1:r1 interface interactions, and the CTP binding site. A hybrid ATCase assembled in vivo with catalytic subunits from E. coli and regulatory subunits from S. marcescens has a 6 mM requirement for aspartate at half-maximal saturation, similar to the 5.5 mM aspartate requirement of the native E. coli holoenzyme at half-maximal saturation. However, the heterotropic response of this hybrid enzyme is characteristic of the heterotropic response of the native S. marcescens holoenzyme: ATP activation and CTP activation. Activation by both allosteric effectors indicates that the heterotropic response of this hybrid holoenzyme (Cec:Rsm) is determined by the associated S. marcescens regulatory subunits.  相似文献   

11.
The secretion of a Serratia marcescens nuclease was followed by fermentation with Escherichia coli. A plasmid, p403-SD2, carrying a 1.3-kilobase-pair insert with a 0.4-kilobase-pair region upstream of the nuclease gene caused a growth-phase-regulated expression of nuclease in E. coli in the same way as that seen in S. marcescens. Deletion of the regulatory gene generating plasmid p403-Rsa1 resulted in a constitutive expression of the nuclease. Anaerobiosis stimulated the expression from p403-SD2 in stationary growth phase by a factor of 10 compared with expression stimulated by cultivation in aerobic conditions; no such effect was found for plasmid p403-Rsa1. Different nutritional factors caused the expression level and the amount of extracellular nuclease to vary more when nuclease was expressed from plasmid p403-SD2 than when it was expressed from plasmid p403-Rsa1. A correlation between the regulatory gene and the extracellular secretion of nuclease is proposed.  相似文献   

12.
A cosmid bank of Serratia marcescens was established from which DNA fragments were cloned into the plasmid pBR322, which conferred the chromosomally encoded hemolytic activity to Escherichia coli K-12. By transposon mutagenesis with Tn1000 and Tn5 IS50L::phoA (TnphoA), the coding region was assigned to a DNA fragment, designated hly, comprising approximately 7 kilobases. Two proteins with molecular weights of 61,000 (61K protein) and 160,000 (160K protein) were expressed by the pBR322 derivatives and by a plasmid which contained the hly genes under the control of a phage T7 promoter and the T7 RNA polymerase. When strongly overexpressed the 160K protein was released by E. coli cells into the extracellular medium concomitant with hemolytic activity. The genes encoding the 61K and the 160K proteins were transcribed in the same direction. Mutants expressing a 160K protein truncated at the carboxy-terminal end were partially hemolytic. Hemolysis was progressively inhibited by saccharides with increasing molecular weights from maltotriose (Mr 504) to maltoheptaose (Mr 1,152) and was totally abolished by dextran 4 (Mr 4,000). This result and the observed influx of [14C]sucrose into erythrocytes in the presence of hemolytic E. coli transformants under osmotically protective conditions suggest the formation of defined transmembrane channels by the hemolysin.  相似文献   

13.
14.
This paper deals with stopped-flow studies on the kinetics of the regain of immunoreactivity toward five distinct monoclonal antibodies during the folding of the guanidine-unfolded beta 2 subunit of Escherichia coli tryptophan synthase and of two complementary proteolytic fragments of beta, F1 (N-terminal; Mw = 29,000) and F2 (C-terminal; Mw = 12,000). It is shown that, while selected as being "specific" for the native protein, these antibodies are all able to recognize early folding intermediates. The two antigenic determinants carried by the F2 domain and the antigenic site carried by the hinge peptide linking F1 and F2 are present so early during the folding process that their kinetics of appearance could not be followed. On the contrary, the rate constants of appearance of two "native-like" epitopes, carried by F1, could be determined during the folding of beta chains. The rate constant of appearance of the epitope to antibody 19 was found to be k = 0.065 s-1 at 12 degrees C. This value is very similar to that we reported previously for the appearance of an early epitope to the same antibody during the folding of acid-denatured beta chains. Thus, in spite of the important structural differences between guanidine-unfolded and acid-denatured beta chains, the same early folding events seem to be involved in the appearance of this epitope. The rate constant was found to be significantly smaller (k = 0.02 s-1 at 12 degrees C) for the appearance of the epitope to antibody 9. This shows that the regain of immunoreactivity is not concerted within the F1 domain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Dried Serratia marcescens ATTC 14014 and Escherichia coli ATTC 4157 cells were exposed to various partial pressures of purified water vapor. The colony-forming ability of the S. marcescens was unimpaired when the dried organisms were stored in water-vapor atmosphere such that P/P0 < 0.55 or P/P0 = 1.0 (where P is the pressure of the water vapor in contact with the organisms, and P0 is vapor pressure of pure water at 25 C). During storage under water-vapor atmospheres with P/P0 between 0.6 and 1.0, the colony-forming ability of the dried S. marcescens was destroyed. The inactivation by water vapor followed the expression — ln N/N0 = Kt1/2, where N0 and N are the number of viable organisms before and after exposure, respectively, t is time, and K is a pseudo constant which is dependent upon the partial pressure of the water vapor at 25 C. Similar results were obtained with dried E. coli. The addition of solutes to the suspending media before freeze-drying was found to influence the stability of the organisms during exposure to water vapor.  相似文献   

16.
17.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

18.
The secretion of a Serratia marcescens nuclease was followed by fermentation with Escherichia coli. A plasmid, p403-SD2, carrying a 1.3-kilobase-pair insert with a 0.4-kilobase-pair region upstream of the nuclease gene caused a growth-phase-regulated expression of nuclease in E. coli in the same way as that seen in S. marcescens. Deletion of the regulatory gene generating plasmid p403-Rsa1 resulted in a constitutive expression of the nuclease. Anaerobiosis stimulated the expression from p403-SD2 in stationary growth phase by a factor of 10 compared with expression stimulated by cultivation in aerobic conditions; no such effect was found for plasmid p403-Rsa1. Different nutritional factors caused the expression level and the amount of extracellular nuclease to vary more when nuclease was expressed from plasmid p403-SD2 than when it was expressed from plasmid p403-Rsa1. A correlation between the regulatory gene and the extracellular secretion of nuclease is proposed.  相似文献   

19.
Association of the apo-beta 2 and the holo-(beta-PLP)2 subunits of tryptophan synthase from Escherichia coli (L-serine hydro-lyase (adding indole) (EC 4.2.1.20)) with alpha subunits of the same enzyme has been studied by microcalorimetry. The results obtained from thermometric titrations clearly demonstrate that only the native complex alpha2beta 2 is formed, independent of an excess of alpha protein. The reaction of the holo-(beta-PLP)2 with alpha subunits at 25 degrees C is accompanied by a negative enthalpy change, which is almost twice as large as that for complex formation with the apo-beta 2 protein, thus indicating that the interaction enthalpy becomes more favorable in the presence of the coenzyme pyridoxal 5'-phosphate (PLP). Both reaction enthalpies show very large negative temperature coefficients, -3600 +/- 100 cal K-1 (Mol of beta 2)-1 being the value for the formation of the apoenzyme and -2300 +/- 100 cal K-1 (mol of beta 2)-1 pertaining to formation of the holoenzyme. The studies on the association of alpha and beta2 subunits in the two buffers revealed that at 25 degrees C approximately 0.75 proton are absorbed in the presence and absence of the coenzyme, whereas at 35 degrees C one proton is taken up from the solution when PLP is present, but two if the apo-beta 2 complex reacts. These results are a clear indication of energetic linkage between intersubunit interaction, hydrogen ion equilibria, and the binding of the coenzyme.  相似文献   

20.
Tryptophan synthase alpha-subunit from Escherichia coli functionally exists as a heterotetramer of alpha(2)beta(2) with beta-subunit. While wild-type and mutant (F139W, T24M/F139W, and T24L/F139W) alpha-subunits were expressed as a monomer from recombinant plasmids in Escherichia coli, T24A/F139W, T24S/F139W, and T24K/F139W mutant alpha-subunits were abnormally expressed as soluble homodimers in addition to monomers. Monomers of dimer-forming mutant alpha-subunits retain high affinity to beta-subunit, high activity in stimulating catalytic activities of beta-subunit, and nearly intact content of secondary structure, indicating that the global structures of these monomers are identical to that of F139W alpha-subunit. However, fluorescence spectra of Trp139 and ANS binding indicate that significant perturbations occur in the mutant proteins. Interestingly, these defective properties of monomers caused by residue replacement were partially repaired by the dimer formation. As a result, it is suggested that dimers may be formed by domain or loop swapping, and that residue 24 may play important role in maintaining on-pathway of alpha-subunit folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号