首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid sequence of rat argininosuccinate lyase deduced from cDNA   总被引:3,自引:0,他引:3  
Argininosuccinate lyase [EC 4.3.2.1] is an enzyme of the urea cycle in the liver of ureotelic animals. The enzymes of the urea cycle, including argininosuccinate lyase, are regulated developmentally and in response to dietary and hormonal changes, in a coordinated manner. The nucleotide sequence of rat argininosuccinate lyase cDNA, which was isolated previously (Amaya, Y., Kawamoto, S., Oda, T., Kuzumi, T., Saheki, T., Kimula, S., & Mori, M. (1986) Biochem. Int. 13, 433-438), was determined. The cDNA clone contained an open reading frame encoding a polypeptide of 461 amino acid residues (predicted Mr = 51,549), a 5'-untranslated sequence of 150 bp, and a 3'-untranslated sequence of 41 bp. The amino acid composition of rat liver argininosuccinate lyase predicted from the cDNA sequence is in close agreement with that determined on the purified enzyme. The predicted amino acid sequences of the human and yeast enzymes along the entire sequences (94 and 39%, respectively), except for a region of 66 residues of the human enzyme near the COOH terminus. However, the sequence of this region of the human enzyme predicted from another reading frame of the human enzyme cDNA is homologous with the corresponding sequences of the rat and yeast enzymes. Therefore, the human sequence should be re-examined. Lysine-51, the putative binding site for argininosuccinate, and the flanking sequences are highly conserved among the rat, steer, human, and yeast enzymes.  相似文献   

2.
In the present study, we isolated clones of human argininosuccinate lyase (ASL) cDNA from a liver cDNA library using a clone of rat ASL cDNA and analyzed human ASL cDNA nucleotide sequence. The results reveal that the sequence of human ASL cDNA published by O'Brien et al. in 1986 [Proc. Natl. Acad. Sci USA 83, 7211-7215] had one-base deletions at three independent positions in the coding regions near the COOH-terminus, which caused frame-shift variations in the amino acid sequence. Amino acid sequencing of peptides prepared from purified human liver ASL showed our predicted amino acid sequence to be correct.  相似文献   

3.
4.
A cDNA clone of the argininosuccinate lyase gene (ASL) was isolated from an adult human liver library by probing with synthetic oligonucleotide probes. This clone and a yeast genomic DNA fragment containing the ASL gene were sequenced using the M13-dideoxynucleotide method. Comparison of the yeast and human clones at the nucleotide and putative amino acid sequence levels indicated identities of 50 and 54%, respectively. The most conserved region of the yeast gene was used to detect human clones in the liver cDNA library to test phylogenetic screening capabilities of conserved genes. ASL was mapped to human chromosome 7pter----q22 using human-mouse somatic cell hybrid DNA and further mapped by in situ hybridization to chromosome 7cen----q11.2 on human metaphase chromosomes. The probe also detected a sequence on chromosome 22. Somatic cell hybrid DNA digested with PvuII revealed a mouse polymorphism between Balb/c and C3H mice in the ASL gene.  相似文献   

5.
Adenylosuccinate lyase was cloned by functional complementation of an Escherichia coli purB mutant using an avian liver cDNA expression library. The derived amino acid sequence is homologous to the bacterial purB-encoded adenylosuccinate lyase which catalyzes the same two steps in purine biosynthesis as the enzyme from animals. Avian adenylosuccinate lyase also shows regions of extensive sequence similarity to the urea cycle enzyme, argininosuccinate lyase. This homology suggests a similar mechanism for catalysis. Homology of adenylosuccinate and argininosuccinate lyases is intriguing because chickens do not utilize the urea cycle in nitrogen excretion. This is the first report of the cloning of a eukaryotic cDNA encoding adenylosuccinate lyase, and it affords a route to isolate the corresponding human gene which has been suggested to be defective in autistic children.  相似文献   

6.
A cDNA expression library constructed in a plasmid pUC8 from poly(A)+ RNA of rat liver was screened immunologically, using an antibody against arginase of rat liver. A cDNA clone was isolated and identified by hybrid-selected translation. The clone contained an insert approximately 1.35 kilobase pairs in length. In the bacterial clone, we detected a specific protein of Mr = about 43,000 that is slightly larger than the purified arginase (Mr = about 40,000) and a high activity of arginase was expressed. The arginase mRNA species of about 1600 bases long was detected in the liver, but not in the small intestine, kidney, spleen and heart of the rats.  相似文献   

7.
Cloning and expression of a human ATP-citrate lyase cDNA.   总被引:1,自引:0,他引:1  
A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.  相似文献   

8.
In adult rat liver, amounts of the urea cycle enzymes are regulated by diet, glucocorticoids, and cAMP. Rat hepatocytes cultured in chemically defined medium were used to precisely define the roles of glucocorticoids and cAMP in regulation of these enzymes at the pretranslational level. With the exception of ornithine transcarbamylase mRNA, cultured rat hepatocytes retain the capacity to express mRNAs for the urea cycle enzymes at the same level observed for liver of intact rats. In the absence of added hormones, mRNAs for argininosuccinate synthetase and argininosuccinate lyase remained at or above normal in vivo levels, while mRNAs for the other three enzymes declined to very low levels. Messenger RNAs for carbamyl phosphate synthetase I, argininosuccinate synthetase, argininosuccinate lyase, and arginase increased in response to either dexamethasone or 8-(4-chlorophenylthio) cAMP (CPT-cAMP). Half-maximal responses occurred at 2-3 nM dexamethasone and at 2-7 microM CPT-cAMP. Cycloheximide abolished the response to dexamethasone but not to CPT-cAMP, suggesting that dexamethasone induced expression of an intermediate gene product required for induction of these mRNAs. The effects of a combination of both hormones were additive for argininosuccinate lyase mRNA and synergistic for carbamyl phosphate synthetase I, argininosuccinate synthetase, and arginase mRNAs. Messenger RNA for ornithine transcarbamylase showed little or no response to any condition tested. Depending on the particular mRNA and hormonal condition tested, increases in mRNA levels ranged from 1.4- to 70-fold above control values.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Argininosuccinate synthetase and argininosuccinate lyase catalyze the synthesis of arginine from citrulline in kidney and also serve as components of the urea cycle in liver of ureotelic animals. Dietary and hormonal regulation of mRNAs encoding these enzymes have been well studied in liver but not in kidney. Messenger RNAs for these enzymes are localized within the renal cortex. Starvation and extreme variations in dietary protein content (0% vs 60% casein) produced 2.6- to 3.5-fold increases in mRNA abundance for these two enzymes in rat kidney. Argininosuccinate lyase mRNA was not induced by dibutyryl cAMP, dexamethasone, or a combination of the two agents. In contrast, argininosuccinate synthetase mRNA was induced 2-fold by dibutyryl cAMP but was unresponsive to dexamethasone. Thus, diet and hormones regulate levels of these mRNAs in rat kidney, but the responses are both qualitatively and quantitatively distinct from the responses previously reported for rat liver.  相似文献   

10.
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.  相似文献   

11.
Arginine is an intermediate in the elimination of excess nitrogen and is the substrate for nitric oxide synthesis. Arginine synthesis has been reported in brain tissue. We have studied the activity of the arginine biosynthetic enzymes argininosuccinate synthetase and argininosuccinate lyase in dexamethasone and/or dibutyryl cyclic AMP treated rat astrocyte cultures. Argininosuccinate lyase activity was stimulated by treatment with either effector and an additive effect was obtained when both agents were added simultaneously. Argininosuccinate synthetase was also increased in dexamethasone treated astrocytes. The effect of dibutyryl cyclic AMP on argininosuccinate synthetase was variable, suggesting a role for additional factors in its regulation as compared to argininosuccinate lyase. Regulation of arginine synthesis in astrocytes may be important to insure that arginine is not limiting for nitric oxide synthesis in neural tissue.  相似文献   

12.
Isolation and characterization of a cDNA for rat liver cysteine dioxygenase   总被引:2,自引:0,他引:2  
Cysteine dioxygenase is a key enzyme of cysteine metabolism in mammals. The cDNA clones for rat liver cysteine dioxygenase were isolated by immunological screening and plaque hybridization from a rat liver cDNA library. The longest clone contained an insert of 1458 bp and encoded a polypeptide of 200 amino acids. The clone included the corresponding nucleotide sequence to amino acid sequences obtained from four lysyl endopeptidase-digested fragments of purified rat liver cysteine dioxygenase. The calculated molecular weight of rat liver cysteine dioxygenase was 23,025. Northern blot analysis revealed a single cysteine dioxygenase mRNA species of about 1.7 kb. A computer homology search indicated that this protein showed no homology with any known protein.  相似文献   

13.
A cDNA clone (HLUG 25) encoding the complete sequence of a human liver UDP-glucuronosyltransferase was isolated from a lambda gt11 human liver cDNA library. The library was screened by hybridization to a partial-length human UDP-glucuronosyltransferase cDNA (pHUDPGT1) identified from a human liver pEX cDNA expression library by using anti-UDP-glucuronosyltransferase antibodies. The authenticity of the cDNA clone was confirmed by hybrid-select translation and extensive sequence homology to rat liver UDP-glucuronosyltransferase cDNAs. The sequence of HLUG 25 cDNA was determined to be 2104 base-pairs long, including a poly(A) tail, and contains a long open reading frame. The possible site of translation initiation of this sequence is discussed with reference to a rat UDP-glucuronosyltransferase cDNA clone (RLUG 38).  相似文献   

14.
A high level of transferrin mRNA in the liver of analbuminemic rats   总被引:2,自引:0,他引:2  
By means of immunological screening, a cDNA clone bearing the mRNA sequence for rat transferrin was isolated from a cDNA library of rat liver mRNA. The amounts of transferrin mRNA in livers of analbuminemic rats (NAR, Nagase analbuminemia rats) and normal rats were determined by RNA blot hybridization using a cloned transferrin cDNA probe. The level of transferrin mRNA in the NAR liver was about 1.7 times that in the normal rat liver. These findings suggest that the enhanced synthesis of transferrin in the NAR liver resulted from an increase in the transferrin mRNA level.  相似文献   

15.
Molecular cloning of cDNA for rat liver catalase   总被引:4,自引:0,他引:4  
For the studies on the induction of peroxisomal enzymes by hypolipidemic agents, we have tried to isolate a cDNA clone for rat liver catalase. A recombinant clone, pMJ501, was isolated, of which cDNA insert specifically hybridized to catalase mRNA in hybridization-selected translation. On RNA blot hybridization, it hybridized to 2.4-kilobases RNA which was increased about 1.5-fold by the administration of di-(2-ethylhexyl)phthalate to the rats. The nucleotide sequence of the cDNA contains a reading frame for 109 amino acid residues which match the reported amino acid sequence of bovine liver catalase at the carboxyl end with 82% homology. It is concluded that pMJ501 contains a cDNA sequence for rat liver catalase.  相似文献   

16.
Restriction fragments isolated from a 17-kb rat genomic DNA clone containing the gene for apolipoprotein (apo) E were radiolabeled and used to screen a rat liver cDNA library. A cDNA clone hybridizing to a 6-kb genomic DNA fragment was isolated and the nucleotide sequence of the cDNA insert determined. The sequence was homologous to the sequence for human apo C-I and was used to derive the corresponding amino acid sequence. Unlike human apo C-I, mature rat apo C-I contains histidine, lacks valine, and has alanine at the C terminus and aspartate as the N terminus. Screening the rat liver cDNA library with a radiolabeled 1.9-kb restriction fragment from the genomic DNA clone containing the rat apo E gene identified another cDNA clone (ECL cDNA). Nucleotide sequencing yielded a derived 75-amino-acid sequence for the ECL protein with a hydrophobicity profile similar to that of rat apo C-I. Northern analysis demonstrated a 0.50-kb band for ECL mRNA. The tissue-specific expression of the gene is similar to that of rat apo C-I. This study indicates that the rat apo C-I and ECL genes are closely linked, about 4.5 and 12 kb downstream of the apo E gene, respectively.  相似文献   

17.
Using a monospecific antibody to the major cytosolic glutathione-S-transferase of human liver, we have isolated a cDNA clone from a human liver cDNA expression vector library in lambda gt11. The clone cross-hybridizes with a rat liver ligandin (glutathione-S-transferase 1-2) cDNA probe. The clone has an insert of 1.25 kb, a size sufficient to code for the 23 kilodalton subunit of human GST. Digestion of the insert with Hinf I produced three fragments (0.8 kb, 0.4 kb and 0.1 kb). A similar pattern of multiple bands was observed when rat liver GST1-2 cDNA probe was used for Southern blot analysis of Pst digests of rat and human genomic DNAs. These data suggest that these two functionally similar proteins exhibit sequence homology between their respective cDNAs and at ligandin loci, in spite of the lack of immuno-crossreactivity between them.  相似文献   

18.
19.
A clonal strain of epithelial cells has been established from the transplantable Morris hepatoma 7800 and is designated 7800C1. The cells grow with a population doubling time of about three days in serum-supplemented synthetic medium. Cells of the 7800C1 strain have maintained measurable activities of all the enzymes of the urea cycle during 17 months in continuous culture. The activity of argininosuccinate lyase is approximately that found in normal rat liver, while argininosuccinate synthetase, carbamoyl phosphate synthetase, arginase and ornithine carbamoyl transferase activities are, respectively, 40%, 28%, 6%. and 1% of normal values. Treatment of 7800C1 cells with glucagon, dibutyryl 3′,5′-cyclic adenosine monophosphate or hydrocortisone did not increase the activity of any of the five enzymes.  相似文献   

20.
The major soluble protein in the lenses of most birds and reptiles is delta-crystallin. In chickens and ducks the delta-crystallin gene has duplicated, and in the duck both genes contribute to the protein in the lens, while in the chicken lens there is a great preponderance of the delta 1 gene product. Purified delta-crystallin has previously been shown to possess the enzymatic activity of argininosuccinate lyase. In order to determine the enzymatic properties of the two duck delta-crystallins their corresponding cDNA molecules were placed in yeast and bacterial expression plasmids. In Saccharomyces cerevisiae, the activity of each crystallin was assessed by transformation of the expression plasmids into a strain deficient for argininosuccinate lyase activity. The ability of the resulting yeast to grow on arginine deficient medium was used as a measure of enzymatic activity. Yeast expressing the duck delta 2-crystallin protein grew rapidly, while those expressing delta 1-crystallin failed to grow. Enzyme activity measurements confirmed the presence of activity in the delta 2-crystallin-expressing yeast, and no detectable activity could be demonstrated in the delta 1-crystallin-expressing yeast. Northern blotting of RNA from the transformed yeast revealed equal levels of mRNA species from the two constructs. For further analysis, the delta 2-crystallin cDNA was placed in the bacterial expression plasmid, pET-3d. The delta 2-crystallin protein produced in Escherichia coli was purified to homogeneity and analyzed to determine the kinetic properties. A Km of 0.35 mM was determined for argininosuccinate and a Vm of 3.5 mumols/min/mg was determined. These data demonstrate that, following duplication of the primordial argininosuccinate lyase gene, one of the genes maintained its role as an enzyme (delta 2-crystallin) while also serving as a crystallin and the other has evolved to specialize as a structural protein in the lens (delta 1-crystallin), presumably losing most or all of its catalytic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号