首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method.  相似文献   

2.
Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy.  相似文献   

3.
V V Didenko 《BioTechniques》2001,31(5):1106-16, 1118, 1120-1
Fluorescence resonance energy transfer (FRET) is widely used in biomedical research as a reporter method. Oligonucleotides with a DNA backbone and one or several chromophore tags have found multiple applications as FRET probes. They are especially advantageous for the real-time monitoring of biochemical reactions and in vivo studies. This paper reviews the design and applications of various DNA-based probes that use FRET The approaches used in the design of new DNA FRET probes are discussed.  相似文献   

4.
5.
The ability of detecting the subtle variations occurring, among different individuals, within specific DNA sequences encompassed in highly polymorphic genes discloses new applications in genomics and diagnostics. DQB1 is a gene of the HLA-II DQ locus of the Human Leukocyte Antigens (HLA) system. The polymorphisms of the trait of the DQB1 gene including codons 52–57 modulate the susceptibility to a number of severe pathologies. Moreover, the donor-receiver tissue compatibility in bone marrow transplantations is routinely assessed through crossed genotyping of DQB and DQA. For the above reasons, the development of rapid, reliable and cost-effective typing technologies of DQB1 in general, and more specifically of the codons 52–57, is a relevant although challenging task. Quantitative assessment of the fluorescence resonance energy transfer (FRET) efficiency between chromophores labelling the opposite ends of gene-specific oligonucleotide probes has proven to be a powerful tool to type DNA polymorphisms with single-nucleotide resolution. The FRET efficiency can be most conveniently quantified by applying a time-resolved fluorescence analysis methodology, i.e. time-correlated single-photon counting, which allows working on very diluted template specimens and in the presence of fluorescent contaminants. Here we present a full in-vitro characterization of the fluorescence responses of two probes when hybridized to oligonucleotide mixtures mimicking all the possible genotypes of the codons 52–57 trait of DQB1 (8 homozygous and 28 heterozygous). We show that each genotype can be effectively tagged by the combination of the fluorescence decay constants extrapolated from the data obtained with such probes.  相似文献   

6.
GFP-based fluorescence resonance energy transfer (FRET) probes that visualize local activity-changes of Ras and Rho GTPases in living cells are now available for examining the spatio-temporal regulation of these proteins. This article describes principles and strategies to develop intramolecular FRET probes for Ras- and Rho-family GTPases. The procedure for characterizing candidate probes, and image acquisition and processing are also explained. An optimal FRET probe should have (i) a wide dynamic range (which means a high sensitivity), (ii) a high fluorescence intensity, (iii) target specificity, and (iv) a minimal perturbation to endogenous signaling cascades. Although an improvement of FRET probes should be executed in a trial-and-error manner, practical tips for optimization are provided here. In addition, we illustrate some applications of FRET probes for neuronal cells, which are composed of diverse subcellular compartments with different functions; thus, tools to decipher the dynamics of GTPase activity in each compartment have long been desired.  相似文献   

7.
8.
A method based on two-tiered fluorescence resonant energy transfer (FRET) has been developed for selective and sensitive detection of species involved in a multivalent interaction. Pentavalent binding between cholera toxin and ganglioside GM1 is used as a model system to demonstrate the advantage of the two-tiered FRET over one-stage FRET in both conventional fluorimeter and flow cytometer. In the system, three fluorescent probes (namely, fluorescence donor, acceptor, and intermediate) are covalently tagged to receptors, and the intermediate is used to bridge the energy transfer between the donor and acceptor even though the donor's fluorescence spectrum does not overlap with absorption spectrum of the acceptor. One of the most significant improvements of the scheme over one-stage FRET is a dramatic decrease in the background fluorescence of the acceptor fluorescence, which, theoretically and practically, increases the detection sensitivity.  相似文献   

9.
We report here an extension of homogeneous assays based on fluorescence intensity and lifetime measuring on DNA hybridization. A novel decay probe that allows simple one-step nucleic acid detection with subnanomolar sensitivity, and is suitable for closed-tube applications, is introduced. The decay probe uses fluorescence resonance energy transfer (FRET) between a europium chelate donor and an organic fluorophore acceptor. The substantial change in the acceptor emission decay time on hybridization with the target sequence allows the direct separation of the hybridized and unhybridized probe populations in a time-resolved measurement. No additional sample manipulation or self-hybridization of the probes is required. The wavelength and decay time of a decay probe can be adjusted according to the selection of probe length and acceptor fluorophore, thereby making the probes applicable to multiplexed assays. Here we demonstrate the decay probe principle and decay probe-based, one-step, dual DNA assay using celiac disease-related target oligonucleotides (single-nucleotide polymorphisms [SNPs]) as model analytes. Decay probes showed specific response for their complementary DNA target and allowed good signal deconvolution based on simultaneous optical and temporal filtering. This technique potentially could be used to further increase the number of simultaneously detected DNA targets in a simple one-step homogeneous assay.  相似文献   

10.
Spectroscopic properties of two newly synthesized water-soluble thiol-reactive fluorescent probes, 7-(iodoacetamido)-coumarin-4-carboxylic acid (I-Cca) and N-iodoacetyl-beta-(2-naphthyl)alanine (I-Nal), were characterized using single cysteine mutants of Escherichia coli adenylate kinase. Together with two known water-soluble thiol-reactive dyes (Lucifer yellow iodoacetamide and 5-iodoacetamidosalicylic acid) and as well, tryptophan residues (either native or inserted into a protein by site directed mutagenesis), these probes can be arranged pairwise in a molecular tool set for studies of structural transitions in proteins by means of fluorescence resonance energy-transfer (FRET) experiments. A set of seven donor/acceptor pairs which allow determination of intramolecular distances and their distributions over the range 10-40 A in labeled protein derivatives is described. The charged groups present in the probes facilitate the conjugation reaction and improve postlabeling purification. General considerations for design of charged probes and site-directed labeling for applications of FRET methods in studies of protein structure and dynamics are presented.  相似文献   

11.
Enzymatic ligation methods are useful in diagnostic detection of DNA sequences. Here we describe the investigation of nonenzymatic phosphorothioate-iodide DNA autoligation chemistry as a method for detection and identification of both RNA and DNA sequences. Combining ligation specificity with the hybridization specificity of the ligated product is shown to yield discrimination of a point mutation as high as >10(4)-fold. Unlike enzymatic ligations, this reaction is found to be equally efficient on RNA or DNA templates. The reaction is also shown to exhibit a significant level of self-amplification, with the template acting in catalytic fashion to ligate multiple pairs of probes. A strategy for fluorescence labeling of three autoligating energy transfer (ALET) probes and directly competing them for autoligation on a target sequence is described. The method is tested in several formats, including solution phase, gel, and blot assays. The ALET probe design offers direct RNA detection, combining high sequence specificity with an easily detectable color change by fluorescence resonance energy transfer (FRET).  相似文献   

12.
A conceptually new technique for fast DNA detection has been developed. Here, we report a fast and sensitive online fluorescence resonance energy transfer (FRET) detection technique for label-free target DNA. This method is based on changes in the FRET signal resulting from the sequence-specific hybridization between two fluorescently labelled nucleic acid probes and target DNA in a PDMS microfluidic channel. Confocal laser-induced microscopy has been used for the detection of fluorescence signal changes. In the present study, DNA hybridizations could be detected without PCR amplification because the sensitivity of confocal laser-induced fluorescence detection is very high. Two probe DNA oligomers (5'-CTGAT TAGAG AGAGAA-TAMRA-3' and 5'-TET-ATGTC TGAGC TGCAGG-3') and target DNA (3'-GACTA ATCTC TCTCT TACAG GCACT ACAGA CTCGA CGTCC-5') were introduced into the channel by a microsyringe pump, and they were efficiently mixed by passing through the alligator teeth-shaped PDMS microfluidic channel. Here, the nucleic acid probes were terminally labelled with the fluorescent dyes, tetrafluororescein (TET) and tetramethyl-6-carboxyrhodamine (TAMRA), respectively. According to our confocal fluorescence measurements, the limit of detection of the target DNA is estimated to be 1.0 x 10(-6) to 1.0 x 10(-7)M. Our result demonstrates that this analytical technique is a promising diagnostic tool that can be applied to the real-time analysis of DNA targets in the solution phase.  相似文献   

13.
14.
We report an approach for developing combinatorial fluorescence energy transfer (CFET) tags by tuning the tags' fluorescence emission signatures. The tags can all be excited at a single wavelength and analyzed by a simple optical system. We constructed eight CFET tags with unique fluorescence signatures, detected by a three-color capillary array electrophoresis (CAE) system with 488 nm excitation, using only three fluorescent dyes. A 1',2'-dideoxyribose phosphate spacer was used to separate the donor and acceptor to tune the energy transfer efficiency, generating unique fluorescence signatures. The spacer also served as an electrophoretic mobility tag to tune the mobility of CFET-labeled DNA for multiplex detection of single-nucleotide polymorphisms (SNPs). Six nucleotide variations were identified simultaneously using six CFET tags on synthetic DNA templates and on a PCR product from the retinoblastoma tumor suppressor gene.  相似文献   

15.
When cells are infected with viruses, they notify the immune system by presenting fragments of the virus proteins at the cell surface for detection by T cells. These proteins are digested in the cytoplasm, bound to the major histocompatibility complex I glycoprotein (MHC-I) in the endoplasmic reticulum, and transported to the cell surface. The peptides are cleaved to the precise lengths required for MHC-I binding and detection by T cells. We have developed fluorescent indicators to study the cleavage of peptides in living cells as they are transported from the endoplasmic reticulum to the Golgi apparatus. Specific viral peptides known to be "trimmed" prior to cell surface presentation were labeled with two dyes undergoing fluorescence resonance energy transfer (FRET). When these fluorescent peptides were proteolytically processed in living cells, FRET was halted, so that each labeled fragment and the intact peptide exhibited different fluorescence spectra. Such fluorescent cleavage indicators can be used to study a wide range of biological behaviors dependent on peptide or protein cleavage. However, labeling a peptide with two dyes at precise positions can present a major obstacle to using this technique. Here, we describe two approaches for preparing doubly labeled cleavage indicator peptides. These methods are accessible to researchers using standard laboratory techniques or, for more demanding applications, through cooperation with commercial or core peptide synthesis services using minor modifications of standard synthetic procedures.  相似文献   

16.
We are testing the idea that placement of fixed charges near one face of the DNA double helix can induce DNA bending by a purely electrostatic mechanism. If stretching forces between DNA phosphates are significant, fixed charges should induce DNA bending by asymmetrically modulating these forces. We have previously tested this hypothesis by adding charged residues to small bZIP DNA binding peptides and monitoring DNA bending using electrophoretic phasing assays. Our results were consistent with an electrostatic model of DNA bending in predicted directions. We now confirm these observations with fluorescence resonance energy transfer (FRET). Using a "U"-shaped DNA probe, we report that DNA bending by charged bZIP peptides is readily detected by FRET. We further show that charged bZIP peptides cause DNA bending rather than DNA twisting.  相似文献   

17.
Xia Z  Liu Y 《Biophysical journal》2001,81(4):2395-2402
Green fluorescence protein (GFP)-based fluorescence resonance energy transfer (FRET) is increasingly used in investigation of inter- and intramolecular interactions in living cells. In this report, we present a modified method for FRET quantification in cultured cells using conventional fluorescence microscopy. To reliably measure FRET, three positive control constructs in which a cyan fluorescence protein and a yellow fluorescence protein were linked by peptides of 15, 24, or 37 amino acid residues were prepared. FRET was detected using a spectrofluorometer, a laser scanning confocal microscope, and an inverted fluorescence microscope. Three calculation methods for FRET quantification using fluorescence microscopes were compared. By normalization against expression levels of GFP fusion proteins, the modified method gave consistent FRET values that could be compared among different cells with varying protein expression levels. Whole-cell global analysis using this method allowed FRET measurement with high spatial resolutions. Using such a procedure, the interaction of synaptic proteins syntaxin and the synaptosomal associated protein of 25 kDa (SNAP-25) was examined in PC12 cells, which showed strong FRET on plasma membranes. These results demonstrate the effectiveness of the modified method for FRET measurement in live cell systems.  相似文献   

18.
In this work, the photophysical properties of two oxazine dyes (ATTO 610 and ATTO 680) covalently attached via a C6-amino linker to the 5'-end of short single-stranded as well as double-stranded DNA (ssDNA and dsDNA, respectively) of different lengths were investigated. The two oxazine dyes were chosen because of the excellent spectral overlap, the high extinction coefficients, and the high fluorescence quantum yield of ATTO 610, making them an attractive F?rster resonance energy transfer (FRET) pair for bioanalytical applications in the far-red spectral range. To identify possible molecular dye-DNA interactions that cause photophysical alterations, we performed a detailed spectroscopic study, including time-resolved fluorescence anisotropy and fluorescence correlation spectroscopy measurements. As an effect of the DNA conjugation, the absorption and fluorescence maxima of both dyes were bathochromically shifted and the fluorescence decay times were increased. Moreover, the absorption of conjugated ATTO 610 was spectrally broadened, and a dual fluorescence emission was observed. Steric interactions with ssDNA as well as dsDNA were found for both dyes. The dye-DNA interactions were strengthened from ssDNA to dsDNA conjugates, pointing toward interactions with specific dsDNA domains (such as the top of the double helix). Although these interactions partially blocked the dye-linker rotation, a free (unhindered) rotational mobility of at least one dye facilitated the appropriate alignment of the transition dipole moments in doubly labeled ATTO 610/ATTO 680-dsDNA conjugates for the performance of successful FRET. Considering the high linker flexibility for the determination of the donor-acceptor distances, good accordance between theoretical and experimental FRET parameters was obtained. The considerably large F?rster distance of ~7 nm recommends the application of this FRET pair not only for the detection of binding reactions between nucleic acids in living cells but also for monitoring interactions of larger biomolecules such as proteins.  相似文献   

19.
20.
Fluorescence resonance energy transfer (FRET) provides a unique means of measuring interatomic distances in biological molecules in real time. Recent advances have been made in the application of this technique to studies of conformational changes in proteins. New ways of introducing fluorescence probes into proteins, newly developed fluorescence probes, and progress in the technologies for fluorescence signal detection have greatly expanded the range of applications of FRET. In particular, studies of conformational changes in proteins at a single molecule level and in the native in vivo context of a living cell are now possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号