首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Resembling the lipids in the leaves and other green organs of intact plants, the lipids in photoautotrophic cell cultures of Chenopodium rubrum were found to contain high proportions of monogalactosyldiacylglycerols and digalactosyldiacylglycerols, as well as fair amounts of sulfoquinovosyldiacylglycerols and diacylglycerophosphoglycerols. Conversely, the heterotrophic cell cultures, from which the photoautotrophic cultures had been derived, contained only traces of these compounds. The heterotrophic cultures were rich in sterols, sterol esters, sterol glycosides, and esterified sterol glycosides. The lipids of photoautotrophic cell cultures contained higher proportions of constituent linolenic acid, but lower concentrations of linoleic acid than those of heterotrophic cultures. In the photoautotrophic cultures, as in green leaves, linolenic acid was predominantly estrified in monogalactosyldiacylglycerols and digalactosyldiacylglycerols. This investigation shows that it is possible to select strains of cell cultures, which are capable of grosing photoautotrophically, with the aim of activating the biosynthesis of specific metabolites.  相似文献   

2.
A. Fusseder  P. Ziegler 《Planta》1988,173(1):104-109
[3H]Dihydrozeatin supplied to photoautotrophically growing cell suspension cultures of Chenopodium rubrum was rapidly taken up and metabolized by the cells. The predominant metabolites in extracts of the cells were [3H]dihydrozeatin-O-glucoside and [3H]dihydrozeatin riboside-O-glucoside. Both these compounds could be shown to be compartmented within the vacuole, whereas [3H]dihydrozeatin and [3H]dihydrozeatin riboside, which were both present to a minor extent in cell extracts, were both present to a minor extent in cell extracts, were localized predominantly outside the vacuole. Analysis of the culture medium at the end of the 36-h incubation period showed that there had been an efflux of [3H]dihydrozeatin metabolites out of the cells. Whereas [3H]dihydrozeatin riboside was found to be the major extracellular [3H]dihydrozeatin metabolite, the O-glucosides of neither this compound nor [3H]dihydrozeatin could be detected in the medium. The differential compartmentation of [3H]dihydrozeatin metabolites found with the C. rubrum suspension-culture system is discussed with respect to possible mechanisms governing the metabolism of cytokinins in plants cells.Abbreviations (diH)Z dihydrozeatin - (diH) [9R]Z 9--D-ribofuranosyl dihydrozeatin - HPLC high-performance liquid chromatography - ODS octododecyl silica - PEP phosphoenolyruvate  相似文献   

3.
W. Hüsemann  A. Plohr  W. Barz 《Protoplasma》1979,100(1):101-112
Summary Cell suspension cultures ofChenopodium rubrum have been grown for more than 2 years photoautotrophically with CO2 as sole carbon source. Average increase in fresh weight is appr. 600% within 14 days. The chlorophyll content of photoautotrophic cells (200 g/g fresh weight) is much higher than of photomixotrophic cells (50 g/g fresh weight). The photosynthetic activity of the cells (190 moles CO2×mg–1 chlorophyllXh–1) is comparable to the values found with intact leaves. As shown by short-term14CO2 photosynthesis, both, the photomixotrophic and the photoautotrophic cell suspension cultures assimilate CO2 predominantly via the Calvin pathway.Major differences were found with cells from either exponential or stationary phase of growth with regard to differential labelling of 3-phosphoglyceric acid, malate, sucrose and glucose/fructose.In vitro measurements of carboxylation reactions only partially corroborate our findings with14CO2 incorporation. The ratio of ribulosebisphosphate to phosphoenolpyruvate carboxylase activity is 4.7 for leaves of C.rubrum, 1.2 for photoautotrophic cells during stationary growth and 0.5 for cells during exponential growth phase, however, 0.18 was found for photomixotrophic cells. Though the14CO2 incorporation into 3-phosphoglyceric acid is clearly higher than into malate, thein vitro activity of phosphoenolpyruvatecarboxylase is 2–6 fold higher than that of ribulosebisphosphate carboxylase. We postulate that anaplerotic reactions of the tricarboxylic acid cycle are involved in the regulation of phosphoenolpyruvate carboxylase.Abbreviations 2,4-D didilorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - fr. w. fresh weight - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PPO 2,5-diphenyloxazole - PEP phosphoenolpyruvate - RuBP nbulosebisphosphate  相似文献   

4.
Abstract. Suspension cultured cells of Chenopodium rubrum were grown photoautotrophically under a diurnal light-dark cycle of 16-8h. The following phases of the batch culture were differentiated: a short lag, a cell division phase terminated by a pronounced transition to stationary maintenance which finally gradually passed into senescence. Nitrogen fluxes typical of these stages were followed by measuring uptake of NO3 and NH4+ from the medium and their incorporation into the cellular fractions of nitrogenous compounds. Activities of seven N-metabolizing enzymes were determined. Compartmentation of enzymes and nitrogenous compounds was analysed after isolation of intact chloroplasts and vacuoles from protoplasts. Eighty-two per cent of the N originally present in the medium was taken up and incorporated to an extent of 80% into protein until the end of the division phase. Net protein synthesis ceased upon transition to the stationary phase. During the division phase a vacuolar pool of NO3 was established and then maintained throughout the resting phase. Free cellular NH4+ was not localized within the vacuole and responded to the ammonium content of the medium. Amino acids accumulated in the cells especially during the stationary phase, during which they were present in the vacuole. Typical nitrogen relations are portrayed as flux diagrams for one day of each of the essential developmental phases. The enzyme activities were easily sufficient to account for the observed flow rates of the corresponding nitrogenous compounds. Hence, uptake of NO3 and NH4+ must be considered as steps limiting N metabolism in Chenopodium rubrum cell suspensions.  相似文献   

5.
W. Hüsemann 《Protoplasma》1981,109(3-4):415-431
Summary This communication reports the photoautotrophic growth of hormone and vitamin independent cell suspension cultures ofChenopodium rubrum. The transfer of cells from stationary growth into fresh culture medium results in a high protein formation, followed by an exponential phase of cell division, whereas the onset of rapid chlorophyll formation is delayed for 4 days. At the stage of most rapid cell division there is no net synthesis of starch and sugar. When the cells enter stationary growth, there is a progressive accumulation of chlorophyll, sugar, and starch.Photoautotrophic cell cultures assimilate about 80–90 mol CO2/mg chlorophyll X hour. Dark CO2 fixation is about 3.7% to 2.2% of the light values during exponential and stationary growth, respectively. As shown by short-term14CO2 fixation, CO2 is predominantly assimilated through ribulosebisphosphate carboxylase via the Calvin pathway. There is a significant increase in the14C label of C4 carboxylic acids in exponentially dividing cells as compared to cells from stationary growth. Thein vitro activity of phosphoenolpyruvate carboxylase and ribulosebisphosphate carboxylase is almost equal during exponential cell division. A decrease in cell division activity is accompanied by a significant change in the specific activities of both carboxylation enzymes. In non dividing cells from stationary growth the activity of ribulosebisphosphate carboxylase is greately enhanced and that of phosphoenolpyruvate carboxylase is reduced, documenting the development of carboxylation capacities typical for C3-plants.The experimental results provide evidence that phosphoenolpyruvate carboxylase activity might be regulated by ammonia and could be involved in anaplerotic CO2 fixation which supplies carbon skeletons of the citric acid cycle.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - EDTA ethylene-diamine-tetraacetic acid - FDP fructose bisphosphate - F-6-P fructose-6-phosphate - G-6-P glucose-6-phosphate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenolpyruvate - RuDP ribulosebisphosphate  相似文献   

6.
The construction and operation of a continuous culture system for the propagation of cell suspensions from Chenopodium rubrum under photoautotrophic conditions has been described. A dilution rate of 0.16/day gave an equilibrium culture density of 1,100,000 cells/ml and a mean doubling time of 150 hours. During continuous culture steady state conditions with respect to nutrient uptake, cell protein and chlorophyll content, starch accumulation, in vitro activities of enzymes related to different metabolic pathways could be established. Photosynthetic CO2 assimilation of steady state cells was about 100 mol CO2/mg chlorophyll x hour. Dark CO2 fixation was 3% of the light values.  相似文献   

7.
On photoautotrophically grown, suspension-cultured cells of Chenopodium rubrum L. the electrical potential difference V mand the electrical resistance across plasmalemma and tonoplast have been measured using one or two intracellular micro-electrodes. In a mineral test-medium of 5.8 mM ionic strength V mvalues between 100 and 250 mV, 40% thereof between 170 and 200 mV, and a mean value (±S.E.M.) of 180.6±3.4 mV have been recorded. The average membrane input resistance R mwas 269±36 M, corresponding to an average membrane resistivity r mof 3.0 m2. V mand r mare sensitive to light, temperature, and addition of cyanide, suggesting the presence of an electrogenic hyperpolarizing ion pump, and are ascribed essentially to the plasmalemma. A hexose-specific saturable electrogenic membrane channel is identified through a decrease of V mand r mupon addition of hexoses. The hexoseconcentration-dependent depolarization V msaturates at 92 mV and returns half-saturating concentrations (apparent k mvalues) of 0.16 mM galactose, 0.28 mM glucose, and 0.48 mM fructose. The magnitude of V mand r mwell agrees with pertinent data from mesophyll cells in situ (where only V mdata are available) and from photoautotrophic lower plant cells. However, V mis markedly higher than reported for heterotrophically grown suspension cells of different higher plants (with which r mdata have not been reported so far). It is concluded from the present study and a companion paper on water transport (Büchner et al., Planta, in press) that photoautotrophically grown Chenopodium suspension cells closely resemble mesophyll cells as to cell membrane transport properties.Abbreviations V m membrane potential(mV) - R o input resistance () - R m membrane input resistance () - r m specific resistance (resistivity) of the membrane (m2)  相似文献   

8.
The present study investigates the light acclimation potential of photoautotrophic suspension culture cells of Chenopodium rubrum L. grown in 16 h light/8 h dark cycles. Typical features of sun/shade acclimation could be demonstrated in cultures grown at photon flux densities of 30 and 150 μmol m−2 s−1. Low light grown cells had lower chlorophyll a/b ratios, lower respiration rates and lower light compensation points than high light grown cells. Maximum photosynthetic rate per cell dry weight was highest in low light conditions, indicating that the cells did not enlarge their photosynthetic machinery upon exposure to high light. Transfer of cultures to 800 μmol m−2 s−1 caused photoinhibition as indicated by a decrease in photosynthetic efficiency and by the occurrence of a slowly reversible quenching of variable chlorophyll fluorescence. Extension of the photoinhibitory treatment over six light dark cycles did not result in further dramatic changes of these parameters, whereas the chlorophyll content per dry weight and the chlorophyll a/b ratio decreased. Measurements of photochemical quenching showed that the capability of the cells to dissipate excessive energy had increased during the acclimation process. The presence of the xanthophyll cycle pigments and the operation of the cycle could be demonstrated. In agreement with the putative photoprotective function of antheraxanthin and zeaxanthin these pigments could only be detected under photoinhibitory conditions. Prolonged photoinhibitory treatment resulted in increases in the xanthophyll pigment concentration but not of the potential to deepoxidate violaxanthin. The limited potential of the cells to accumulate zeaxanthin and antheraxanthin might indicate that the xanthophyll cycle is not the main factor determining their resistance to high light stress.  相似文献   

9.
Abstract. Leaf sections (1 × 1 cm) from Chenopodium rubrum L. were floated on Murashige–Skoog medium at constant 20°C and 8800 Lux white fluorescent light. During a period of 4–6 days after inoculation the leaf tissue showed rapid growth and cell division in the mesophyll. Subsequently, after 4 days on a rotary shaker the leaf tissue completely disintegrated and released a great number of single cells into suspension. This procedure, which by-passes the callus culture stage, is well-suited to the rapid production of standardized cell suspension cultures.  相似文献   

10.
Red-violet cell suspension cultures of Chenopodium rubrum were found to accumulate the betacyanins amaranthin, celosianin and betanin and the betaxanthins vulgaxanthin I and vulgaxanthin II. Under a 16-h daylight regime the cells accumulated 0.3–0.4% betacyanins on a dry mass basis after 2–3 weeks of cultivation on the growth medium. Experiments to define a production medium for betacyanins failed with this habituated line. The accumulation could however be increased up to 1% or 100 mg betacyanins/1 by feeding tyrosine and by adaptation of the inoculum size to the nutrient concentration.  相似文献   

11.
Thomas Roitsch  Widmar Tanner 《Planta》1994,193(3):365-371
Photoautotrophic suspension-culture cells of Chenopodium rubrum L. were shifted to mixotrophic growth by adding glucose to investigate whether the activities of plant sugar transporters, as well as the expression of the corresponding genes, are regulated in response to sugars. The rate of d-glucose uptake was shown not to be affected by mixotrophic growth in the presence of d-glucose. The polymerase chain reaction (PCR) technique was applied to amplify cDNA and genomic fragments from monosaccharide-carrier genes. Seven members of a monosaccharide-carrier family were identified of which three were found to be expressed in the suspension-culture cells. The expression of the monosaccharide-carrier genes was independent of the presence of d-glucose.Abbreviation PCR polymerase chain reaction We would like to thank Michaela Bittner, Rainer Ehneß and Monika Kammerer for skillful technical assistance and S. Buchhauser and H. Hallmer for photographic work. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 43) and by Fonds der Chemischen Industrie.  相似文献   

12.
The present experiments were carried out to investigate the effect of increased fluxes of H+ across the plasmalemma on glycolysis in heterotrophic cell suspension cultures of Chenopodium rubrum L. (1) Increased H+ influx was produced by adding glucose, 6-deoxyglucose, 2-deoxyglucose, or sodium fluoride. The net influx decreased to zero after 3 min. This recovery was accompanied by an increase in the rate of O2 uptake, but not of dark CO2 fixation. When glucose or fluoride were added, the increase of O2 uptake occurred without a decrease in the ATP/ADP ratio, and was large enough to provide the ATP that would be needed for compensatory H+ extrusion via the plasmalemma H+-ATPase. When 2-deoxyglucose was added, the rise of respiration was restricted by sequestration of phosphate and depletion of phosphorylated metabolites, the ATP/ADP ratio declined, and a slow net H+ influx started again after 4 min. (2) Alkalinisation of the medium to induce an H+ efflux resulted in rapid activation of dark CO2 fixation, but not of O2-uptake. (3) A stimulation of respiration or dark CO2 fixation was always accompanied by a decrease of phosphoenolpyruvate. This shows that the primary sites for regulation of glycolysis are pyruvate kinase and phosphoenolpyruvate carboxylase, respectively. (4) There was no consistent relation between glycolytic flux and triose-phosphates or hexose-phosphates. This shows that the reactions involved in carbohydrate mobilisation and the conversion of hexose-phosphates to triose-phosphates only have a secondary role in stimulation of glycolysis. (5) Phosphofructokinase will be stimulated as a consequence of the decrease in phosphoenolpyruvate. (6) The increase in glycolytic flux occurred independently of (in the case of 2-deoxyglucose and fluoride), or before (in the case of glucose), any increase of fructose-2,6-bisphosphate. When fructose-2,6-bisphosphate did increase (after supplying glucose), this was accompanied by an increase of triose-phosphate and fructose-1,6-bisphosphate, which otherwise remained very low. It is argued that fructose-2,6-bisphosphate increases as a consequence of the decrease of glycerate-3-phosphate, a known inhibitor of the synthesis of this regulator metabolite. However, activation of pyrophosphate fructose-6-phosphate phosphotransferase by fructose-2,6-bisphosphate does not play an obligatory role in the stimulation of glycolysis.  相似文献   

13.
14.
Johann Peter Gogarten 《Planta》1988,174(3):333-339
Photoautotrophic suspension cells ofChenopodium rubrum were used to determine Donnan potential, charge density and pore-radius distribution in the cell wall. Experiments were done either with turgescent cells or with isolated cell walls. Titration of a cell-wall-generated 9-aminoacridine fluorescence quench with salts of mono- and divalent cations was used to determine Donnan potential and charge density. The experiments and theory were adapted from measurements of membrane surface charges. A tenfold increase in ionic strength, which decreases the repellant forces between charges of the same sign, led to an approximately threefold increase in the measured charge density, thus resulting in a much smaller decrease of the Donnan potential than would be expected if the charge density remained fixed. This decreased influence of ionic strength on the Donnan potential, resulting from the elasticity of the cell wall, was also measurable but less pronounced when the wall of intact cells was stretched by turgor. The porosity of the cell wall was determined by longterm uptake of polyethylene glycols of different molecular weights, and by gel filtration of polyethylene glycols and dextrans as well as mono- and disaccharides using intact suspension cells as matrix. Both methods gave a mean pore diameter of about 4.5 nm and a maximum pore size of 5.5 nm. The resulting pores-size distribution was slightly broader with the latter method.Abbreviations 9-AA 9-aminoacridine - DMBr2 decamethoniumbromide=N,N,N,N,N,N hexamethyldecane-1,10-diaminebromide - DW dry weight after lyophilization - EDTA ethylene diaminetetra acetic acid - EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FW fresh weight - Mops 3-(N-morpholino)propanesulfonic acid - MW molecular weight - PEG polyethylene glycol  相似文献   

15.
Abstract. When heterotrophic cell suspension cultures of Chenopodium rubrum were subjected to water stress by incubation in increasing concentrations of sorbitol there was an immediate shrinking of the protoplast volume. Glucose uptake decreased in parallel. When the external water potential was greater than 0.5 MPa, a change in the partitioning of this incoming carbon was observed, resulting in a doubling of the ratio of sucrose to starch. This was accompanied by an increase in the concentration of the glycolytic intermediates and a particularly pronounced increase in the levels of fructose-2,6-bisphosphate and malate. The extractable activity of sucrose phosphate synthase was determined using a new method which overcomes the problem of uridine-diphosphate loss from the assay medium. It was found that sucrose phosphate synthase activity decreased in the water stressed cells. Therefore, the higher sucrose concentration in these cells is attributed to the increase in metabolite concentrations alone.  相似文献   

16.
17.
Rapidly dividing photoautotrophic cell suspensions from Chenopodium rubrum L. assimilated about 85 μmol CO2 (mg chlorophyll)−1 h−1. During the late stationary phase of culture growth, CO2 fixation rate was reduced to about 60 μmol CO2 (mg chlorophyll)−1 h−1. Actively dividing cells characteristically incorporated a smaller proportion of 14C into starch than cells from non-dividing stationary phases. In rapidly dividing cells, [14C]-turnover from free sugars, sugar-phosphates, organic and amino acids was substantially higher compared to non-dividing cells from stationary growth phase. Higher proportions of photosynthetically fixed carbon were channelled into proteins, lipids and structural components in actively dividing cells than in non-dividing cells. In the latter. 14C was preferentially channeled into starch, and a striking increase in starch accumulation was observed. The transfer of non-dividing, stationary growth-phase cells into fresh culture medium resulted in an increase in the maximum extractable activities of some enzymes involved in the glycolytic and dark respiratory pathways and in the citric acid cycle. In contrast, the maximum extractable activities of the chloroplastic enzymes, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.38) and NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were highest after the cells had reached the stationary growth phase.  相似文献   

18.
An airlift-bioreactor system was established for semicontinuous growth of photosynthetically active plant cell suspension cultures in a controlled environment. The bioreactor unit was constructed as a conventional, internal draught tube airlift-reactor, which is characterized by a H D-1 ratio of 2.9, a ratio of the cross-sectional area of the riser to the cross-sectional area of the downcomer of 0.25 and a surface area of 0.435 m2 for illumination. Cultivation experiments could be scaled up to working volumes of maximal 20 1. Sixteen fluorescent tubes were fixed around the outer glass cylinder to provide cells continuously with light. An external cooling device was used to keep the temperature constantly at 27°C. Agitation as well as supply with CO2 was performed by injecting air enriched with CO2 through a ring-shaped sparger at the bottom of the vessel. A first set of experiments was carried out with a photoautotrophic culture of Chenopodium rubrum L. Cell material adapted to large scale culture conditions was used to inoculate a modified MS medium (Murashige & Skoog 1962) without any organic constituents. Under these conditions a biomass increase of 1870% was achieved in 18 days. Several physiological parameters (e.g. pigmentation, photosynthetic O2 evolution, carbohydrate content) were measured routinely to elucidate the growth characteristics of large-scale grown Chenopodium cells. Electron microscopic photographs from different phases of culture growth clearly demonstrate the pattern of cellular development. Special emphasis was placed upon the differentiation of chloroplast ultrastructure. The presented data confirm the feasibility of large-scale culture techniques with photosynthetic active plant cell cultures.Abbreviations D diameter - DW dry weight - FW fresh weight - H height - KLa volumetric oxygen transfer coefficient (h-1) - MES 2-(N-morpholino)-ethanesulfonic acid - specific growth rate (d-1) - PAR photosynthetically active radiation (400–700 nm) - Pepcase phosphoenolpyruvate carboxylase - Rubisco ribulose-1,5-biphosphate carboxylase/oxygenase - td doubling time (d) - vvm (aeration volume) (medium volume)-1 min-1 Dedicated to Prof. F.-C. Czygan on the Occasion of his 60th Birthday  相似文献   

19.
Mixotrophic cell cultures of Chenopodium rubrum were found to synthesize 5 to 33 times more monogalactosyldiacylglycerols and 5 to 16 times more digalactosyldiacylglycerols than heterotrophic ones. The monogalactosyldiacylglycerols and digalactosyldiacylglycerols from mixotrophic cultures contained higher levels of linolenic acid as compared to heterotrophic cultures. It is concluded that the active synthesis of these galactolipids with high levels of constituent linolenic acid is associated with the onset of photosynthesis in plant cell cultures, as is the case in intact plants.  相似文献   

20.
W. Hüsemann 《Protoplasma》1982,113(3):214-220
Summary This communication describes the construction and operation of an airlift fermenter for the photoautotrophic growth of cell suspension cultures fromChenopodium rubrum. The basic batch culture unit provides a culture of 1.51 volume, sufficient to permit frequent aseptic sampling. It can be maintained at any desired temperature and aerated to different extents. Using an initial cell density of about 400,000 cells per ml suspension, the increase in cell number is 270% after a 14 days' growth period, although the stationary phase of growth is not yet reached. The transfer of photoautotrophic cell suspensions fromChenopodium rubrum from stationary growth into the large volume of fresh culture medium in the airlift fermenter results in an immediate protein formation, followed by an exponential phase of cell division, whereas rapid chlorophyll accumulation is delayed by 2 days.The growth capacities of photoautotrophic fermenter cultures including protein and chlorophyll formation as well asin vitro activities of the ribulosebisphosphate carboxylase and the phosphoenolpyruvate carboxylase are greatly lower as compared to photoautotrophic cells propagated in standard two-tier culture vessels using 30 ml culture medium. However the pattern of change in the activities of carboxylation enzymes is quite similar in both culture systems.Photoautotrophic cell suspensions fromChenopodium rubrum grown in an airlift fermenter assimilate about 90 mol CO2/mg chlorophyll × hour. Dark CO2 fixation is about 1.5% of the light values.Abbreviations PEF phosphoenolpyruvate - RuDP ribulosebisphosPhate - NS ground glass joints of standardized size made from Duran glass, Schott, Germany  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号