首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A relatively simple method has been developed to improve the resolution for measuring breaks produced in interphase chromosomes by X rays or other agents following the induction of premature chromosome condensation (PCC). Mitotic HeLa cells, which induce PCC when fused with interphase cells, were obtained from cultures grown for several generations in 5-bromodeoxyuridine (BrdU). These were fused to cells from low-passage confluent cultures of normal human fibroblasts and subsequently stained by a modified fluorescence-plus-Giemsa (FPG) technique. Following this protocol the prematurely condensed chromosomes stain intensely, whereas the mitotic chromosomes of the inducer cell(s), which are intermingled with them, stain very lightly. With this technique the interphase chromosomes and their fragments can be identified unequivocally, making scoring much easier and more accurate. The frequency of breaks produced in G1 phase AG1522 human fibroblasts immediately following X-ray doses of 58 and 117 rad was 3.68 and 7.38 per cell, respectively. Use of this technique should allow the detection of damage from ionizing radiation at doses lower than 10 rad.  相似文献   

2.
Telomerase activation represents an early step in carcinogenesis. Increased telomerase activity in cervical cancer suggests a potential target for the development of novel therapeutic drugs. The aim of this study is to investigate the impact of telomerase activity on the biological features of HeLa cells and the possible mechanisms of enhanced apoptosis rate induced by sodium butyrate after telomerase inhibition. We introduced vectors encoding dominate negative (DN)-hTERT, wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker into HeLa cells. Thus we assessed the biological effects of telomerase activity on telomere length, cell proliferation, chemosensitivity and radiosensitivity. In order to understand the mechanisms in which DN-hTERT enhances the apoptosis induced by sodium butyrate, we detected the release status of cytochrome c and apoptosis inducing factor (AIF) from mitochondria. Ectopic expression of DN-hTERT resulted in inhibition of telomerase activity, reduction of telomere length, decreased colony formation ability, and loss of tumorigenicity in nude mice. Moreover, DN-hTERT transfected HeLa cells with shortened telomeres were more susceptible to multiple chemotherapeutic agents and radiation. WT-hTERT transfected HeLa cells with longer telomeres exhibited resistance to radiation and chemotherapeutic agents. Our data demonstrate that elevated release level of cytochrome c and AIF from mitochondria might contribute to the enhanced apoptosis in DN-hTERT transfected HeLa cells after treatment with sodium butyrate. Inhibition of telomerase might serve as a promising adjunctive therapy combined with conventional therapy in cervical cancer. Both of them contributed equally to this work.  相似文献   

3.
为获得端粒酶阳性肿瘤细胞特异表达载体用于癌症的基因治疗 ,克隆并构建了人端粒酶催化亚基 (hTERT)基因启动子调控的萤光素酶报告载体 .用脂质体转染法将其分别转染肿瘤细胞和正常细胞 ,检测其在肿瘤细胞和正常细胞中的转录活性 .hTERT启动子在所检测的 4种端粒酶阳性的肿瘤细胞中具有明显的转录活性 ,平均为阳性对照的 4 4 3% ;而在端粒酶阴性的正常人胚肺成纤维细胞中则无明显的转录活性 .提示hTRET启动子的转录活性在端粒酶阳性的肿瘤细胞中明显上调 ,由hTERT启动子构建的载体可能是一种新颖和有前景的肿瘤细胞特异性表达的基因治疗载体  相似文献   

4.
Du, G., Fischer, B. E., Voss, K.-O., Becker, G., Taucher-Scholz, G., Kraft, G. and Thiel, G. The Absence of an Early Calcium Response to Heavy-Ion Radiation in Mammalian Cells. Radiat. Res. 170, 316-326 (2008).Intracellular calcium is an important second messenger that regulates many cell functions. Recent studies have shown that calcium ions can also regulate the cellular responses to ionizing radiation. However, previous data are restricted to cells treated with low-LET radiations (X rays, gamma rays and beta particles). In this work, we investigated the calcium levels in cells exposed to heavy-ion radiation of high LET. The experiments were performed at the single ion hit facility of the GSI heavy-ion microprobe. Using a built-in online calcium imaging system, the intracellular calcium concentrations were examined in HeLa cells and human foreskin fibroblast AG1522-D cells before and after irradiation with 4.8 MeV/nucleon carbon or argon ions. Although the experiment was sensitive enough to detect the calcium response to other known stimuli, no response to heavy-ion radiation was found in these two cell types. We also found that heavy-ion radiation has no impact on calcium oscillation induced by hypoxia stress in fibroblast cells.  相似文献   

5.
Induction of telomerase activity by irradiation in human lymphoblasts   总被引:5,自引:0,他引:5  
Neuhof, D., Ruess, A., Wenz, F. and Weber, K. J. Induction of Telomerase Activity by Irradiation in Human Lymphoblasts. Radiat. Res. 155, 693-697 (2001). Telomerase activity is a radiation-inducible function, which suggests a role of this enzyme in DNA damage processing. Since the tumor suppressor TP53 plays a central role in the regulation of the cellular response to DNA damage, our study explored the ability of ionizing radiation to change telomerase activity and telomere length in two closely related human lymphoblast cell lines with different TP53 status. TK6 cells (wild-type TP53) and WTK1 cells (mutated TP53) were exposed to different doses of X rays, and telomerase activity was measured by PCR ELISA at different times after irradiation. A dose-dependent increase in telomerase activity was observed. One hour after irradiation with 4 Gy, TK6 and WTK1 cells showed an approximately 2.5-fold increase; for lower doses (0.1 to 1 Gy), telomerase induction was seen only in TK6 cells. Telomerase induction was observed by 0.5 h after irradiation, with a further increase up to 24 h. Irradiated TK6 and WTK1 cells had longer telomeres (+1.3 kb) than unirradiated cells 14 days after exposure. Our data demonstrate a dose-dependent induction of telomerase activity and lengthening of telomeres by ionizing radiation in human lymphoblasts. Induction of telomerase activity by radiation does not generally appear to be controlled by the TP53-dependent DNA damage response pathway. However, for low doses, induction of telomerase requires wild-type TP53.  相似文献   

6.
7.
The influence of p53 status on potentially lethal damage repair (PLDR) and DNA double-strand break (DSB) repair was studied in two isogenic human colorectal carcinoma cell lines: RKO (p53 wild-type) and RC10.1 (p53 null). They were treated with different doses of ionizing radiation, and survival and the induction of DNA-DSB were studied. PLDR was determined by using clonogenic assays and then comparing the survival of cells plated immediately with the survival of cells plated 24 h after irradiation. Doses varied from 0 to 8 Gy. Survival curves were analyzed using the linear-quadratic formula: S(D)/S(0) = exp-(αD+βD2). The γ-H2AX foci assay was used to study DNA DSB kinetics. Cells were irradiated with single doses of 0, 0.5, 1 and 2 Gy. Foci levels were studied in non-irradiated control cells and 30 min and 24 h after irradiation. Irradiation was performed with gamma rays from a 137Cs source, with a dose rate of 0.5 Gy/min. The RKO cells show higher survival rates after delayed plating than after immediate plating, while no such difference was found for the RC10.1 cells. Functional p53 seems to be a relevant characteristic regarding PLDR for cell survival. Decay of γ-H2AX foci after exposure to ionizing radiation is associated with DSB repair. More residual foci are observed in RC10.1 than in RKO, indicating that decay of γ-H2AX foci correlates with p53 functionality and PLDR in RKO cells.  相似文献   

8.
Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. A hammer-headed ribozyme (telomerase ribozyme, te-loRZ) directed against the RNA component of human telomerase (hTR) was designed and synthesized. TeloRZ showed a specific cleavage activity against the hTR. The cleavage efficacy reached 60%. A eukaryotic expression plasmid containing teloRZ gene was inducted into HeLa cells by lipofectamine, the telomerase activity in HeLa cells expressing teloRZ decreased to one eighth of that in the control cells. The doubling time increased significantly and the apoptosis ratio was elevated with increasing population doublings (PDS). After 19-20 PDS 95% cells were apoptotic. To further investigate the effect of teloRZ on tumor growth, the eukaryotic expression plasmid containing teloRZ was injected into transplanted tumor of nude mouse. The teloRZ e  相似文献   

9.
Normally, cell division leads to shortening of telomeres, the nucleoprotein complexes located at the ends of linear chromosomes. When telomeres reach a critically short length, cells cease to divide. However, immortal tumor cells display stable telomere lengths and are able to maintain their proliferative state. Wong and colleagues have found that telomerase is sequestered by nucleoli during certain stages of the cell cycle, decreasing the likelihood of telomerase access to chromatin until the late S phase. Additionally, they demonstrate that ionizing radiation tends to keep telomerase sequestered in nucleoli, whereas cell transformation leads to telomerase translocation into the nucleoplasm, where, presumably, it can catalyze the lengthening of telomeres at appropriate and inappropriate sites. The sequestration of telomerase thus imposes a newly identified level of regulation on telomerase activity, implicating telomerase localization as a potentially useful target for pharmacotherapy.  相似文献   

10.
Telomerase is mainly active in human tumor cells, which provides an opportunity for a therapeutic window on telomerase targeting. We sought to evaluate the potential of the thio-phosphoramidate oligonucleotide inhibitor of telomerase, imetelstat, as a drug candidate for treatment of esophageal cancer. Our results showed that imetelstat inhibited telomerase activity in a dose-dependent manner in esophageal cancer cells. After only 1week of imetelstat treatment, a reduction of colony formation ability of esophageal cancer cells was observed. Furthermore, long-term treatment with imetelstat decreased cell growth of esophageal cancer cells with different kinetics regarding telomere lengths. Short-term imetelstat treatment also increased γ-H2AX and 53BP1 foci staining in the esophageal cancer cell lines indicating a possible induction of DNA double strand breaks (DSBs). We also found that pre-treatment with imetelstat led to increased number and size of 53BP1 foci after ionizing radiation. The increase of 53BP1 foci number was especially pronounced during the first 1h of repair whereas the increase of foci size was prominent later on. This study supports the potential of imetelstat as a therapeutic agent for the treatment of esophageal cancer.  相似文献   

11.
Telomerase, which is required to maintain telomeres, has attracted considerable attention as a target for anticancer therapy. In this study, we investigated the inhibition of HeLa cell telomerase activity and cell cycle progression by triethylene tetraamine (TETA), using a modified telomeric repeat amplification protocol (TRAP) assay, and flow cytometry. TETA inhibited telomerase activity in HeLa cell extracts, with an IC50 of about 7.8 microM. Coupled with this inhibition, TETA also increased the proportion of cells in the G1 phase of the cell cycle in a dose-dependent manner. These findings demonstrate that TETA is a potent inhibitor of telomerase in micromolar concentrations, and inhibits the proliferation of HeLa cells by arresting them in G1.  相似文献   

12.
Telomerase plays an important role in cell proliferation and carcinogenesis and is believed to be a good target for anti-cancer drugs. Elimination of template function of telomerase RNA may repress the telomerase activity. A hammer-headed ribozyme (telomerase ribozyme, teloRZ) directed against the RNA component of human telomerase (hTR) was designed and synthesized. TeloRZ showed a specific cleavage activity against the hTR. The cleavage efficacy reached 60%. A eukaryotic expression plasmid containing teloRZ gene was inducted into HeLa cells by lipofectamine, the telomerase activity in HeLa cells expressing teloRZ decreased to one eighth of that in the control cells. The doubling time increased significantly and the apoptosis ratio was elevated with increasing population doublings (PDS). After 19–20 PDS 95% cells were apoptotic. To further investigate the effect of teloRZ on tumor growth, the eukaryotic expression plasmid containing teloRZ was injected into transplanted tumor of nude mouse. The teloRZ effectively inhibited the telomerase activity in transplanted tumor, promoted apoptosis of the transplanted tumor cells, and decreased the tumor size significantly. These results indicate that teloRZ can effectively inhibit telomerase activity and growth of tumor cells, and suggest the potential use of this ribozyme in anti-cancer therapy.  相似文献   

13.
14.
Human chondrosarcomas do not respond to current chemotherapies or radiation therapy, and their size and histological appearance do not reliably predict the risk of local recurrence and metastases, making selection of surgical treatment difficult. Identifying mechanisms responsible for the proliferation and invasive behavior of these tumors would be of immense clinical value. We hypothesized that telomerase expression is one of these mechanisms. We detected telomerase expression in 7 of 16 chondrosarcomas, but cells cultured from telomerase-negative chondrosarcomas acquired strong telomerase activity and lost tumor suppressor activity after their establishment in culture. These changes were associated with accelerated indefinite cell proliferation, morphological transition, and increased invasive activity, indicating that telomerase activation and loss of cell cycle control leads to the emergence of aggressive cells from chondrosarcoma cell populations. These observations may lead to better understanding of the factors responsible for malignant transformation, local recurrence, and metastases of cartilage neoplasms.  相似文献   

15.
16.
An in vitro microscopic assay for mitosis-inducing activity in mitotic HeLa cells was developed and used to demonstrate that cells irradiated and arrested in G2 phase of the cell cycle contain an inhibitor of mitosis. This assay system has a number of advantages over other assays including the use of autologous components (HeLa nuclei and mitotic cell extracts) in contrast to the microinjection method with Xenopus oocytes and without the requirements for microinjection expertise and Xenopus oocytes. The radiation-inducible inhibitor was detected at the lowest radiation dose tested (2 Gy) with maximal activity achieved within 30 min after radiation. Inhibitor activity decayed with time after radiation (2 Gy) with no activity detected at 6 h even though the cells remained in G2 phase, suggesting that either synthesis or activation of additional components is necessary for recovery from G2 arrest. The inhibitor activity was not detected in irradiated cells treated with caffeine to induce premature recovery from G2 arrest.  相似文献   

17.
Ren JG  Xia HL  Just T  Dai YR 《FEBS letters》2001,488(3):123-132
Reactive oxygen species (ROS) have been found to trigger apoptosis in tumor cells. At the same time, telomerase is found to be associated with malignancy and reduced apoptosis. However little is known about the linkage between ROS such as *OH and telomerase/telomere. To address the interrelations between *OH and telomerase/telomere in tumor cell killing, HeLa, 293 and MW451 cells were induced to undergo apoptosis with *OH radicals generated via Fe(2+)-mediated Fenton reactions (0.1 mM FeSO(4) plus 0.3-0.9 mM H2O2) and telomerase activity, telomere length were measured during apoptosis. We found that during *OH-induced apoptosis, telomere shortening took place while no changes in telomerase activity were observed. Our results suggest that *OH-induced telomere shortening is not through telomerase inhibition but possibly a direct effect of *OH on telomeres themselves indicating that telomere shortening but not telomerase inhibition is the primary event during *OH-induced apoptosis. Strikingly, we also found that *OH-induced apoptosis in HeLa cells is caspase-3-independent but is associated with reduction of mitochondrial transmembrane potential. Our results indicate that *OH triggers apoptotic tumor cell death through a telomere-related, caspase-independent pathway.  相似文献   

18.
Summary Use of the multicellular tumor spheroid as a tumor model allows separate host or tumor treatment with ionizing radiation and examination of the effects on host-tumor immune interactions. Spheroids of EMT6/Ro, a BALB/c mammary tumor were implanted into the peritoneal cavity of syngeneic immunized mice, recovered, and dissociated into single cells. Cytolytic activity of mature spheroid associated cells and peritoneal cells was resistant to radiation doses as high as 1000 rads when irradiated directly prior to assay. Mice irradiated (200, 400, 700 rads) 24 h prior to spheroid injection had an increased number of tumor cells and decreased number of tumor infiltrating and peritoneal host cells upon spheroid recovery. This was paralleled by an increased colony forming efficiency per spheroid. Cytolytic activity of the spheroid associated cells against radiolabeled EMT6 cells was in many cases decreased with radiation although lysis was the same on a per cell basis. Cytolytic activity by peritoneal cells from these mice increased with dose as measured on a per cell basis. This activity from irradiated animals was carried out by a Thyl+ cell.  相似文献   

19.
The mechanisms underlying the hyper-radiosensitivity of AT cells were investigated by analyzing chromosome aberrations in the G(2) and M phases of the cell cycle using a combination of chemically induced premature chromosome condensation (PCC) and fluorescence in situ hybridization (FISH) with chromosome painting probes. Confluent cultures of normal fibroblast cells (AG1522) and fibroblast cells derived from an individual with AT (GM02052) were exposed to gamma rays and allowed to repair at 37 degrees C for 24 h. At doses that resulted in 10% survival, GM02052 cells were approximately five times more sensitive to gamma rays than AG1522 cells. For a given dose, GM02052 cells contained a much higher frequency of deletions and misrejoining than AG1522 cells. For both cell types, a good correlation was found between the percentage of aberrant cells and cell survival. The average number of color junctions, which represent the frequency of chromosome misrejoining, was also found to correlate well with survival. However, in a similar surviving population of GM02052 and AG1522 cells, induced by 1 Gy and 6 Gy, respectively, AG1522 cells contained four times more color junctions and half as many deletions as GM02052 cells. These results indicate that both repair deficiency and misrepair may be involved in the hyper-radiosensitivity of AT cells.  相似文献   

20.
目的:利用荧光定量PCR法检测端粒酶抑制剂作用于人肝癌细胞SMMC-7721后端粒酶活性的变化,探讨其抑制端粒酶活性的可能机制,为端粒酶抑制剂的临床应用提供理论依据。方法:利用荧光染料SYBR—Green I建立一种新的端粒酶活性检测方法:FQ—TRAP法。利用FQ—TRAP法检测端粒酶抑制剂作用后肿瘤细胞端粒酶活性变化。结果:端粒酶抑制剂作用后,肝癌细胞端粒酶活性都有变化,其中以ASODN,EGCG,AZT抑制效果较明显。结论:端粒酶FQ—TRAP法是一种特异性、灵敏度、重复性都较好,可快速、简便及定量检测人端粒酶活性的方法,端粒酶抑制剂作用后癌细胞端粒酶活性的变化,为端粒酶抑制剂的临床应用提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号